摘要
针对传统系统在医院电子档案自动分类中存在错分率高、分类效率低的问题,设计基于文本特征识别的医院电子档案自动分类系统。首先,建立电子档案文本信息处理模块、文本特征识别模块、自动分类模块3个功能模块;其次,对档案文本信息聚类,提取电子档案文本特征,根据特征进行档案自动化分类;最后,进行实验对比分析。实验结果表明,该系统的错分率在1%以内,分类效率在95%以上,具有一定的应用价值。
To address the issues of high misclassification rate and low classification rate in traditional systems for automatic classification of hospital electronic records,a hospital electronic record automatic classification system based on text feature recognition is designed.Firstly,establish three functional modules:electronic archive text information processing module,text feature recognition module,and automatic classification module.Secondly,cluster archive text information,extract electronic archive text features,and automatically classify archives based on these features.Finally,conduct experimental comparative analysis.The experimental results show that the misclassification rate of the system is within 1%,and the classification rate is above 95%,which has certain application value.
作者
王杰
WANG Jie(Zhumadian Traditional Chinese Medicine Hospital,Zhumadian Henan 463000,China)
出处
《信息与电脑》
2023年第7期195-197,共3页
Information & Computer
关键词
文本特征识别
电子档案
自动分类
错分率
分类效率
text feature identification
electronic file
automatic classification
error rate
classification rate