摘要
针对油气物联网中无效能量消耗和网络寿命短等问题,提出了一种新的数据筛选和融合算法。该算法通过分析数据与正常数据的偏离程度自适应地判断数据的异常程度,对数据进行簇内筛选和簇间融合,避免了网络信息的冗余以及能量的过度消耗。实验结果表明,与传统方案相比,该方案能有效改善油气物联网的通信质量和能耗效率。
A new data filtering and fusion algorithm are proposed for the problems of ineffective energy consumption and short network lifetime in oil and gas IoT(Internet of Things).This algorithm can adaptively judge the degree of data abnormality,filter and fusion data,avoiding redundant network information and excessive energy consumption.The algorithm adaptively determines the abnormality of the data by judging the deviation degree between the monitoring data and the normal data,performs intra-cluster filtering and inter-cluster fusion on the data.Compared with the traditional scheme,the proposed scheme can effectively improve the communication quality and energy consumption efficiency of oil and gas IoT.
作者
刘苗
霍卓苗
孙振兴
LIU Miao;HUO Zhuomiao;SUN Zhenxing(Department of Electrical Information Engineering,Northeast Petroleum University-Qinhuangdao,Qinhuangdao 066004,China;School of Physics and Electronic Engineering,Northeast Petroleum University,Daqing 163318,China)
出处
《吉林大学学报(信息科学版)》
CAS
2023年第3期539-544,共6页
Journal of Jilin University(Information Science Edition)
基金
黑龙江省自然科学基金资助项目(LH2022F004)。
关键词
油气物联网
自适应算法
能耗算法
效率优化
oil and gas internet of things(IoT)
adaptive algorithm
energy consumption algorithm
efficiency optimization