期刊文献+

基于小波变换和S-G滤波的多尺度平滑预处理方法 被引量:5

Multiscale smoothing preprocessing method based on wavelet transform and S-G filtering
原文传递
导出
摘要 针对模锻压力机在高压、高温、高速和高振动等恶劣环境下长时间服役时,其信号存在非线性、不平稳、易被强烈背景噪声干扰等问题,提出一种基于小波变换与S-G滤波的多尺度平滑预处理方法。其中,小波变换方法对信号进行多尺度分解,有效捕捉信号的特征和动态变化,并通过调整小波基函数和S-G滤波器参数来满足多尺度信号的特性和去噪需求;逆离散小波变换用于重构信号,实现信号的完整、连续和平滑。结果表明:该方法可在多尺度水平上有效地消除噪声的同时保留有效的信息,优于传统的移动平均法、S-G滤波、小波变换强制消噪处理法和门限消噪方法。 For the problem that the signal of the die forging press was affected by nonlinearity,instability,and strong background noise interference in harsh environments such as high pressure,high temperature,high speed,and high vibration during long-term operation,a multiscale smoothing preprocessing method based on wavelet transform and S-G filtering was proposed.Among them,the wavelet transform method decomposed the signal in multiscal to effectively capture the characteristics and dynamic changes of the signal,adjusted the wavelet basis function and S-G filter parameters to meet the characteristics of the multiscale signal and denoising requirements.The inverse discrete wavelet transform was used to reconstruct the signal to realize the integrity,continuity,and smoothness of the signal.The results show that this method can effectively eliminate noise at the multiscale level while retaining effective information,which is superior to traditional moving average method,S-G filtering,wavelet transform forced denoising processing method and threshold denoising method.
作者 袁超 张浩 凌云汉 孙越 黄达力 张南 胡凤娇 Yuan Chao;Zhang Hao;Ling Yunhan;Sun Yue;Huang Dali;Zhang Nan;Hu Fengjiao(Beijing Research Institute of Mechanical&Electrical Technology Co.,Ltd.CAM,Beijing 100083,China)
出处 《锻压技术》 CAS CSCD 北大核心 2023年第6期140-155,共16页 Forging & Stamping Technology
基金 国家重点研发计划(2022YFB3706904) 国家科技重大专项(2018ZX04000024)。
关键词 模锻压力机 数据预处理 小波变换 S-G滤波 多尺度平滑 消除噪声 die forging press data preprocessing wavelet transform S-G filtering multiscale smoothing noise immunization
  • 相关文献

参考文献5

二级参考文献45

共引文献77

同被引文献68

引证文献5

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部