期刊文献+

GL_(2)(C)的一些不可约表示

Some irreducible representations of GL_(2)(C)
下载PDF
导出
摘要 设G=GL_(2)(C),并且B是G的标准Borel子群,并且CG,CB分别是群G和群B的在复数域C上的群代数.对于任意B的特征标θ,定义G的离散诱导模M(θ)=CG×CB^(θ).证明了当θ是反支配权时,M(θ)是个不可约表示.由此给出了一类GL_(2)(C)全新的、无限维的不可约表示. Let G=GL_(2)(C),and let B be the standard Borel subgroup of G,and let CG(resp.CB)be the group algebra of G(resp.B)over the field of complex numbers.For any character of B,define the naive induced module M(0)=CG@cB 0.In this paper,we prove that if 3 is antidominant,then M(0)is irreducible.Thus,we give a class of new infinite-dimensional irreducible representations of GL_(2)(C).
作者 陈晓煜 赖元旭 李支泽 CHEN Xiaoyu;LAI Yuanxu;LI Zhize(Mathematics and Science College,Shanghai Normal University,Shanghai 200234,China)
出处 《上海师范大学学报(自然科学版)》 2023年第3期295-302,共8页 Journal of Shanghai Normal University(Natural Sciences)
基金 Shanghai Sailing Program(17YF1413800) The National Natural Science Foundation of China(11701373)。
关键词 简约群 朴素诱导模 Bruhat分解 reductive group naive induced module Bruhat decomposition
  • 相关文献

参考文献2

二级参考文献14

  • 1Bonnafé C. On a Theorem of Shintani. J Algebra, 1999, 218: 229-245.
  • 2Borel A, Tist J. Homomorphismes “abstraits” de groupes algebriques simples. Ann Math, 1973, 97: 499-571.
  • 3Carter R W. Finite Groups of Lie Type: Conjugacy Classes and Complex Characters. New York: John Wiley and Sons, 1985.
  • 4Curtis C W, Reiner I. Methods of Representation Theory: With Applications to Finite Groups and Order, Vols. I and II. Pure and Applied Mathematics. New York: John Wiley and Sons, 1981 and 1987.
  • 5Deligne P, Lusztig G. Representations of Reductive Groups Over Finite Fields. Ann Math, 1976, 103: 103-161.
  • 6Kazhdan D, Lusztig G. Representations of Coxeter groups and Hecke algebras. Invent Math, 1979, 53: 165-184.
  • 7Lusztig G. Left cells in Weyl groups. In: Lie Groups Representations. Lecture Notes in Math, vol. 1024. Berlin: Springer-Verlag 1983, 99-111.
  • 8Lusztig G. Characters of Reductive Groups Over A Finite Field. Annals of Mathematics Studies, vol. 107. Princeton, NJ: Princeton University Press, 1984.
  • 9Lusztig G. Character sheaves V. Adv Math, 1986, 61: 103-155.
  • 10Serre J P. Linear Representations of Finite Groups. GTM 42. New York-Heidelberg: Springer-Verlag, 1977.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部