期刊文献+

一种嵌入式轻量化卷积神经网络计算加速方法 被引量:1

Embedded Lightweight Convolutional Neural Network Computing Acceleration Method
下载PDF
导出
摘要 针对传统ARM处理器算力低、不适用于实时性需求比较高的应用场景的问题,本文提出了一种基于ARM处理器的单指令多数据(Single Instruction Multiple Data,SIMD)指令集的轻量化卷积神经网络计算加速方法,并将该方法用于处理脑电信号(Electroencephalogram,EEG)来进行手术过程中麻醉深度监测.通过可学习步长量化的方法得到轻量化卷积神经网络,减少浮点数的运算量,极大地提高了网络速度.采用基于ARM处理器SIMD指令集的卷积加速器,各卷积层分别可加速几十倍、几百倍,甚至一万多倍.在Ultra 96-V2开发板上用ARM处理器实现整个网络的运算,在昆士兰大学生命体征公开数据集上的测试结果表明,仅需39.64ms就可以处理时间跨度为1s的EEG单通道信号,速度提高到原来的10.5倍,且功耗仅为0.1J,在提升速度的同时基本保持网络预测的准确率,能够很好地预测出麻醉深度. A lightweight convolutional neural network computing acceleration method based on the ARM processor SIMD(Single Instruction Multiple Data)instruction set is proposed to solve the problem that traditional ARM processors have low computing power and are not suitable for application scenarios with high real-time requirements.And this method is used to process EEG(Electroencephalogram)signals to monitor the depth of anesthesia during surgery.The lightweight convolutional neural network is obtained by the method of learned step quantization,which reduces the amount of floating-point calculations and greatly improves the network speed.Using the convolution accelerator based on the SIMD instruction set of the ARM processor,each convolutional layer can be accelerated by dozens of times,hundreds of times,or even more than 10000 times respectively.Use ARM processor on Ultra 96-V2 board to implement the entire network,the test results on the University of Queensland Vital Signs Public Dataset show that it only takes 39.64ms to process EEG single-channel signals with a time span of one second,speeding up to 10.5 times,and the power consumption is only 0.1J,maintaining the accuracy while increasing the speed,predicting the depth of anesthesia well.
作者 谢媛媛 刘一睿 陈迟晓 康晓洋 张立华 XIE Yuan-yuan;LIU Yi-rui;CHEN Chi-xiao;KANG Xiao-yang;ZHANG Li-hua(Academy for Engineering and Technology,Fudan University,Shanghai 200433,China;School of Information Science and Technology,Fudan University,Shanghai 200433,China;Frontier Institute of Chip and System,Fudan University,Shanghai 200433,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2023年第7期1345-1351,共7页 Journal of Chinese Computer Systems
基金 国家自然科学基金面上项目(61974033)资助 国家自然科学基金青年科学基金项目(61904038)资助 国家重点研发计划项目(2021YFC0122702)资助 上海市青年科技英才扬帆计划项目(19YF1403600)资助 上海市“科技创新行动计划”生物医药领域科技支撑项目(19441907600)资助 季华实验室项目(X190021TB190,X190021TB193)资助 上海市科技成果转化和产业化项目(19511132000)资助 上海市市级科技重大专项项目(2021SHZDZX0103)资助。
关键词 网络轻量化 可学习步长量化 单指令多数据 数据流架构 脑电信号 lightweight network learned step quantization SIMD data flow electroencephalo
  • 相关文献

参考文献4

二级参考文献51

  • 1于布为.全麻本质的探讨[J].中国麻醉与镇痛,2000,2(1):1-3. 被引量:11
  • 2Punjasawadwong Y, Boonjeungmonkol N, Phongchiewboon A. Bispectral index for improving anaesthetic delivery and postoperative recovery[J]. Cochrane Database Syst Rev,2007,17 ( 4 ) : CD003843.
  • 3Haenggi M, Ypparila-Wolters H, Bieri C, et al. Entropy and bispectral index for assessment of sedation, analgesia and the effects of unpleasant stimuli in critically ill patients: an observational study[J]. Crit Care, 2008,12 ( 5 ): R119.
  • 4Rigouzzo A, Girault L, Louver N, et al. The relationship between bispectral index and propofol during target-controlled infusion anesthesia: a comparative study between children and young adults[J]. Anesth Analg,2008,106 (4): 1109-1116.
  • 5Schmidt GN, Bischoff P, Standl T, et al. Comparative evaluation of the Datex- Ohmeda S/5 Entropy Module and the Bispectral Index monitor during propofolremifentanil anesthesia[J]. Anesthesiology,2004,101 ( 6 ) : 1283-1290.
  • 6Anderson RE, Jakobsson JG. Entropy of EEG during anaesthetic induction: a comparative study with propofol or nitrous oxide as sole agent[J]. Br J Anaesth, 2004,92 ( 2 ) : 167-170.
  • 7Hans P, Dewandre PY, Brichant JF, et al. Comparative effects of ketamine on Bispectral Index and spectral entropy of the electroencephalogram under sevoflurane anaesthesia[J]. Br J Anaesth, 2005,94 ( 3 ) : 336-340.
  • 8Stammet P, Werer C, Mertens L, et al. Bispectral index ( BIS ) helps predicting bad neurological outcome in comatose survivors after cardiac arrest and induced therapeutic hypothermia[J]. Resuscitation, 2009,80 ( 4 ) : 437-442.
  • 9Lefoll-Masson C, Fermanian C, Aim e I, et al. The comparability of bispeetral index and state entropy index during maintenance of sufentanil-sevofluranenitrous oxide anesthesia[J]. Anesth Anal, 2007,105 ( 5 ) : 1319-1325.
  • 10Ge SJ, Zhuang XL, Wang YT et al. Changes in the rapidly extracted auditory evoked potentials index and the bispectral index during sedation induced by propofol or midazolam under epidural block. Br J Anaesth,2002,89(2) :260-264.

共引文献81

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部