期刊文献+

无人机辅助的服务缓存边缘计算最优计算卸载决策与资源分配 被引量:2

UAV-enabled Service Caching Edge Computing Optimal Computation Floading and Resource Allocation Strategy
下载PDF
导出
摘要 边缘计算中利用无人机作为边缘节点进行动态部署,能够适应复杂的环境,大大提升边缘计算系统的性能.本文提出利用无人机辅助的服务缓存边缘计算最优计算卸载和资源分配策略.此策略在确定无人机3D位置和边缘服务器中服务的部署,以实现在时延约束下最小化能耗的目的.具体来说,首先,建立本地计算模型和MEC计算模型,计算出任务的处理时延和能耗;其次,在服务缓存、时延约束等条件下,建立最小化能耗的数学模型;最后,采用遗传算法框架对目标问题进行求解.求解过程采用双层优化方法,外层层将无人机3D位置和服务缓存方案放入基因编码,内层先利用贪心的思想确定资源分配,再将问题转化为整数线性规划问题进行求解.通过仿真证明了本文所提出算法的可行性和优越性. In edge computing,unmanned aerial vehicles(UAVs)are used as edge nodes for dynamic deployment,which can adapt to complex environments and greatly improve the performance of edge computing systems.This article presents an optimal computing offloading and resource allocation strategy for edge computing using UAV-enabled service caching.This strategy is to determine the 3D location of UAV and the deployment of services in edge servers to achieve the goal of minimizing energy consumption under delay constraints.Specifically,first,establish a local computation model and an MEC computation model to calculate the processing delay and energy consumption of the task.Secondly,establish a mathematical model to minimize energy consumption under the conditions of service caching and delay constraints.Finally,The genetic algorithm framework is used to solve the target problem.The solution process adopts a two-layer optimization method.The outer layer puts the UAV′s 3D location and service cache scheme into the genetic code,and the inner layer first uses the greedy idea to determine the resource allocation,and then converts the problem into an integer linear programming problem for solution.The simulation proves the feasibility and superiority of our proposed algorithm.
作者 田贤忠 闵旭 周璐 TIAN Xian-zhong;MIN Xu;ZHOU Lu(College of Computer Science and Technology,Zhejiang University of Technology,Hangzhou 310000,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2023年第7期1557-1562,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61672465,61772472)资助 浙江省自然科学基金项目(LY15F020027)资助。
关键词 边缘计算 多无人机部署 服务缓存 卸载策略 资源分配 edge computing multi-UAV deployment service cache computing offloading resource allocation
  • 相关文献

同被引文献11

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部