摘要
数学教学质量评价是一个多因素、多层次的复杂过程,为提升数学教学质量评估的准确性和效率,文中提出一种基于注意力机制优化的神经网络评估预测方法。在数学教学评价一级指标与二级指标之间构建注意力增强层,提取重要的指标特征,并利用提取的特征构建神经网络评估预测模型。仿真结果表明,所提方法具有模型结构高效、预测准确度高的效果,在教学管理中具有一定的应用价值。
Mathematics teaching quality evaluation is a multi-factor and multi-level complex process.In order to improve the accuracy and efficiency of mathematics teaching quality evaluation,a neural network evaluation and prediction method based on attention mechanism optimization is proposed.The attention enhancement layer is constructed between the primary index and the secondary index of mathematics teaching evaluation,and the important index features are extracted.The neural network evaluation and prediction model is constructed by means of the extracted features.The simulation results show that the proposed method has the effect of high efficiency model structure and high prediction accuracy,and has a certain application value in teaching management.
作者
李琳
赵锐
江晋
LI Lin;ZHAO Rui;JIANG Jin(Xi’an University of Posts&Telecommunications,Xi’an 710121,China;Xi’an Polytechnic University,Xi’an 710048,China)
出处
《现代电子技术》
2023年第14期175-179,共5页
Modern Electronics Technique
基金
陕西省高等教育教学改革研究:面向国家信息产业需求的地方行业高校新工科专业群建设机制的构建与探索(21BY102)
陕西省十三五教育规划项目(SGH18H089)。
关键词
高校教学管理
数学教学质量评估
深度神经网络预测模型
注意力机制
注意力分布
深度学习
university teaching management
mathematics teaching quality evaluation
deep neural network prediction model
attention mechanism
attention distribution
deep learning