摘要
近年来,尽管自动驾驶(AD)技术在研发和商业化方面已取得显著进展,但自动驾驶规模化商业落地仍面临巨大挑战:一方面单车智能自动驾驶存在一定的安全问题;另一方面由开放道路场景引发的感知长尾、混行博弈等问题造成自动驾驶车辆的可运行设计域(ODD)受限。车辆亟需融合车端、路端、云端多源多维信息,进行一体化协同感知、协同决策、协同控制,拓展单车智能自动驾驶的能力边界。该文提出面向自动驾驶的车路云一体化(VICAD)系统框架,将不同的车路云协同部署策略与自动驾驶算法进行统一建模;在此基础上开展模拟仿真及系统评价,利用评价结果反馈对VICAD系统进行持续迭代优化,从而提升自动驾驶能力。此外,还进一步结合场景案例及产业落地实践,阐述了车路云一体化协同对自动驾驶大规模商业化落地的意义,并为VICAD的后续发展提出建议。
While major advances have been made in the R&D and commercialization of autonomous driving(AD)in the past decade,there still exists significant challenges in the large-scale commercial deployment of AD in complex open-road scenarios,such as longtail perception problem and limited operational design domain(ODD).Information from vehicles,traffic and the underlying infrastructure(V2X)can be used to enhance the overall system safety and accelerate the deployment,with integration of multi-scaled,multi-dimensional diverse sources.This integration would enable cooperated perception,decision-making,and control,expanding single-vehicle intelligence’s capability boundaries.By using this combined knowledge,some of the obstacles encountered in the commerciliazation of autonomous driving can be addressed.This paper introduces a unified framework for autonomous driving known as Vehicle-Infrastructure-Cloud Autonomous Driving(VICAD).VICAD combines the diverse collaborative deployment strategies related to vehicles,infrastructure,and the cloud with autonomous driving algorithms via an integrated framework.Simulations and evaluations are conducted to evaluate the performance of VICAD system,and evaluation results are then feedback as input of the VICAD system.This iterative process enables the continuous optimization of collaborative deployment strategies and autonomous driving algorithms,thereby enhancing the capabilities of autonomous driving.Moreover,this paper describes the key role of VICAD in fostering the large-scale commercial deployment of autonomous driving with practical cases and industrial applications,and concludes with suggestions for further VICAD development.
作者
张亚勤
李震宇
尚国斌
周谷越
高果荣
袁基睿
ZHANG Yaqin;LI Zhenyu;SHANG Guobin;ZHOU Guyue;GAO Guorong;YUAN Jirui(Institute for AI Industry Research,Tsinghua University,Beijing 100084,China;Apollo Intelligent Connectivity(Beijing)Technology Co.,Ltd,Beijing 100084,China)
出处
《汽车安全与节能学报》
CAS
CSCD
北大核心
2023年第3期249-273,共25页
Journal of Automotive Safety and Energy