期刊文献+

基于法向量权重改进的ICP算法 被引量:5

Improved ICP Algorithm Based on Normal Vector Weight
下载PDF
导出
摘要 针对三维重建过程中点云配准的精度和速度不理想的问题,提出一种基于法向量权重改进的迭代最近点(ICP)算法。通过将点云的法向量投射到高斯球上,统计不同方向法向量的分布情况,结合物体的几何结构信息赋予相应的权重,利用法向量权重结合点到平面的误差度量方法计算最优刚体变换矩阵。实验结果证明:以球面点云数据为例,与改进前的迭代最近点(ICP)算法相比,在配准速度没有降低的情况下,配准误差减小为原来的30%左右,而且该算法适用于各种点云模型,效果显著。 Aiming at the problem that the accuracy and speed of point cloud registration in the process of 3D reconstruction are not ideal,an iterative nearest point(ICP)algorithm based on normal vector weight improvement is proposed.By projecting the normal vector of the point cloud onto the Gaussian sphere,the distribution of normal vectors in different directions is counted,the corresponding weight is assigned by combining the geometric structure information of the object,and the normal vector weight combined with the error measurement method from point to plane is used to calculate the optimal rigid body transformation matrix.Experimental results show that taking spherical point cloud data as an example,compared with the iterative closest point(ICP)algorithm before improvement,the registration error is reduced to about 30%without reducing the registration speed,and the algorithm is suitable for various point cloud models with significant effects.
作者 朱玉梅 邢明义 蔡静 ZHU Yu-mei;XING Ming-yi;CAI Jing(Beijing Changcheng Institute of Metrology and Measurement,Aviation Industry Corporation of China,Ltd.,Beijing 100095,China;Beihang University,Beijing 100191,China)
出处 《计量学报》 CSCD 北大核心 2023年第6期852-857,共6页 Acta Metrologica Sinica
基金 国家自然科学基金(61875007)。
关键词 计量学 点云配准 ICP算法 法向量 权重 metrology point cloud registration ICP algorithm normal vector weight
  • 相关文献

参考文献9

二级参考文献61

  • 1罗先波,钟约先,李仁举.三维扫描系统中的数据配准技术[J].清华大学学报(自然科学版),2004,44(8):1104-1106. 被引量:100
  • 2张学昌,习俊通,严隽琪.基于点云数据的复杂型面数字化检测技术研究[J].计算机集成制造系统,2005,11(5):727-731. 被引量:27
  • 3何文峰,查红彬.基于平面特征的深度图像配准[A].见:中国人工智能进展2003,上卷[C]:643-648,北京邮电大学出版社,2003.
  • 4Besl P J,Mckay N D.A method for registration of 3-d shapes[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(2):239 -256.
  • 5Chen Y,Medioni G.Object modeling by registration of multiple range images[A].In:Proceeding of the 1991 IEEE International Conference on Robotics and Automation[C],Sacramento,CA,USA,1991:2724 - 2729.
  • 6Blais G,Levine M D.Registering multiview range data to create 3D computer graphics[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1995,17(8):820 - 824.
  • 7Li Q,Griffiths J G.Iterative closest geometric objects registration[J].Computers and Mathematics with Applications,2000,40(10):1171 - 1188.
  • 8Yang R,Allen P.Registering,integrating,and building cad models from range data[A].In:IEEE International Conference on Robotics and Automation[C],Leuven,Belgium,1998:3115 - 3120.
  • 9戴静兰,陈志杨,叶修梓.ICP算法在点云配准中的应用[J].中国图象图形学报,2007,12(3):517-521. 被引量:197
  • 10王曼,叶正麟,陈作平,王树勋.基于数学形态学的编码标志点识别算法[J].计算机工程与应用,2007,43(36):94-96. 被引量:11

共引文献297

同被引文献49

引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部