期刊文献+

基于RBF神经网络的双色LOGO塑件成型工艺优化 被引量:1

Optimization of Two-Color LOGO Plastic Part Forming Process Based on RBF Neural Network
下载PDF
导出
摘要 以某汽车贯穿灯LOGO塑件为研究对象,通过正交试验、计算机辅助工程(CAE)软件和径向基函数(RBF)神经网络对注塑工艺参数进行优化,并对优化结果进行生产验证,得到了满足质量要求的产品。 Taking the LOGO plastic part of a certain car through light as the research object,the injection molding process parameters were optimized through orthogonal experiments,computer-aided engineering(CAE)software and radial basis function(RBF)neural network.The optimization results were verified in production,and products that meet the quality requirements were obtained.
作者 张君 黄瑶 周甫芝 王雷刚 Zhang Jun;Huang Yao;Zhou Fuzhi;Wang Leigang(School of Materials Science and Engineering,Jiangsu University,Zhenjiang,Jiangsu,212013;Danyang Kaixin Precision Mould Co.,Ltd.,Zhenjiang,Jiangsu,212132)
出处 《现代塑料加工应用》 CAS 2023年第3期48-51,共4页 Modern Plastics Processing and Applications
关键词 厚壁塑件 正交试验 径向基函数神经网络 工艺优化 thick-wall plastic part orthogonal test radial basis function neural network process optimization
  • 相关文献

参考文献5

二级参考文献20

共引文献41

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部