期刊文献+

随机Zakharov格点方程的后向紧随机吸引子

Backward Compact Random Attractors for Stochastic Zakharov Lattice Equation
下载PDF
导出
摘要 在对外力后向缓增的假设条件下,通过对解的估计,首先证明了具有乘法噪音的随机Zakharov格点方程在空间E=l^(2)×l^(2)×l^(2)上存在后向紧一致吸收集,再证明了由该方程生成的随机动力系统在吸收集上是后向渐进紧的.最后利用后向紧吸引子的存在性定理,证明了该随机Zakharov格点方程在空间E=l^(2)×l^(2)×l^(2)上存在后向紧随机吸引子. When the external force is backward tempered,by estimating the solution,it is first proved that the random Zakharov lattice equation with multiplicative noise has backward compact uniformly absorbing set on the space E=l^(2)×l^(2)×l^(2),then it is proved that the random dynamical system generated by this equation is backward asymptotically compact on the absorbing set.Finally,by the Existence theorem of backward compact attractors,it is proved that there exists a backward compact random attractor for the stochastic Zakharov lattice equation in the space E=l^(2)×l^(2)×l^(2).
作者 张琳 李扬荣 ZHANG Lin;LI Yangrong(School of Mathematics and Statistics,Southwest University,Chongqing 400715,China)
出处 《西南师范大学学报(自然科学版)》 CAS 2023年第7期53-59,共7页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家自然科学基金项目(12271444).
关键词 Zakharov格点方程 乘性噪音 后向紧随机吸引子 Zakharov lattice equations multiplicative noise backward compact random attractors
  • 相关文献

参考文献4

二级参考文献30

  • 1Lu, K., Wang, B.: Attractor for Klein-Gordon Schrodinger Equation in Unbounded Domains. J. Diff. Equa., 170, 281-316 (2001)
  • 2Temam, R.: Infinite-dimensional dynamical systems in mechanics and physics, Appl. Math. Sci. 2nd edn., Vol. 68, New York, Springer-Verlag, 1988
  • 3Feireisl, E.: Long time behavior and convergence for semilinear wave equation on R^n. J. Dynam. Diff. Eqns, 9, 133-155 (1997)
  • 4Wang, B.: Attractors for reaction diffusion equtions in bounded domains. Physica D, 128, 41-52 (1999)
  • 5Yin, F., Zhou, S., Ouyang, Z., Xiao, C: Global attractor for Klein-Gordon-Schrodinger lattice system. Applied Mathematics and Mechanics, 28(5), 695-706 (2006)
  • 6Erneux, T., Nicolis, G.: Propagating waves in discete bistable reaction-diffusion systems. Phisica D, 67, 237-244 (1993)
  • 7Kapral, R.: Discrete models for chemically reaction systems. J. math. Chem., 6, 113-163 (1991)
  • 8Firth, W. I.: Optical memory and spatial chaos. Phys. Rev. Lett., 61, 329-332 (1988)
  • 9Chua, L. O., Roska, T.: The CNN paradigm IEEE Trans. Circuits Sys., 40, 147 156 (1993)
  • 10Cahn, J. W.: Theory of crystal growth and interface motion in crystalline materials. Acta Metall., 8, 554-562 (1960)

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部