摘要
为了快速、准确地识别出桥梁冲刷损伤的位置和程度,提出了一种基于桥梁结构动力特性和改进粒子群优化算法的桥梁冲刷识别方法。该方法先将桥梁结构动力特性与单位力作用下墩顶静力位移作为桥梁冲刷识别参数;然后,利用多元非线性回归得到冲刷识别参数与不同桥墩冲刷深度之间的定量关联,根据桥梁实测时获取的动力特性值便可识别出桥墩左、右两侧不均匀冲刷深度;最后,对一座简支梁桥进行数值分析,演示了本文基于改进粒子群优化算法的桥梁冲刷识别方法的具体应用步骤。研究结果表明:本文方法可识别出桥梁冲刷位置和冲刷深度,且识别结果具有一定的准确性。在实际工程中,通过常规桥梁检测即可实现桥梁基础冲刷损伤识别,避免了水下作业带来的操作难题,且可快速对桥梁冲刷状态进行准确评估。
A bridge scour identification method based on dynamic characteristics of bridge structure and improved particle swarm optimization algorithm was proposed,in order to identify the position and degree of bridge scour damage quickly and accurately.The dynamic characteristics of the bridge structure and the static displacement of the pier top are taken as the scour identification parameters of the bridge in this method,and the quantitative correlation between the scour identification parameters and the scour depth of different piers was obtained by using multiple nonlinear regression.Therefore,the uneven scour depth of the pier can be identified according to the dynamic characteristics obtained during the actual detection of the bridge.Finally,the numerical simulation analysis of a simply-supported beam bridge was carried out,and the concrete application steps of the proposed bridge scour identification method based on the improved particle swarm optimization algorithm were demonstrated.The results show that the proposed method can identify the bridge scour location and scour depth,which has a certain accuracy.In practical engineering,scour damage identification of bridge foundation can be realized by using this method through conventional bridge detection,which avoids operational difficulties brought by underwater operation,and can evaluate the scour state quickly and accurately.
作者
谭国金
孔庆雯
何昕
张攀
杨润超
朝阳军
杨忠
TAN Guo-jin;KONG Qing-wen;HE Xin;ZHANG Pan;YANG Run-chao;CHAO Yang-jun;YANG Zhong(College of Transportation,Jilin University,Changchun 130022,China;Changchun Construction Project Safety Supervision Station,Changchun 130012,China;Jilin Provincial Highway Administration,Changchun 130021,China;Jilin Traffic Planning and Design Institute,Changchun 130021,China)
出处
《吉林大学学报(工学版)》
EI
CAS
CSCD
北大核心
2023年第6期1592-1600,F0002,共10页
Journal of Jilin University:Engineering and Technology Edition
基金
国家重点研发计划项目(2021YFB2600604,2021YFB2600600)
国家自然科学基金面上项目(51978309)
黑龙江省交通运输厅科技项目(2021-1)
吉林省交通运输科技计划项目(2021-01-02,2020-1-3,2020-1-7).
关键词
桥梁工程
动力特性
识别方法
改进粒子群优化算法
冲刷深度
bridge engineering
dynamic characteristics
identification method
improved particle swarm optimization algorithm
depth of scour