期刊文献+

Nonlinear Schrödinger Approximation for the Electron Euler-Poisson Equation

原文传递
导出
摘要 The nonlinear Schr?dinger(NLS for short)equation plays an important role in describing slow modulations in time and space of an underlying spatially and temporarily oscillating wave packet.In this paper,the authors study the NLS approximation by providing rigorous error estimates in Sobolev spaces for the electron Euler-Poisson equation,an important model to describe Langmuir waves in a plasma.They derive an approximate wave packet-like solution to the evolution equations by the multiscale analysis,then they construct the modified energy functional based on the quadratic terms and use the rotating coordinate transform to obtain uniform estimates of the error between the true and approximate solutions.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2023年第3期361-378,共18页 数学年刊(B辑英文版)
基金 supported by the National Natural Science Foundation of China(Nos.12001338,11871172) the Science and Technology Projects in Guangzhou(No.202201020132) the Youth fund of Shanxi University of Finance and Economics(No.QN-202021)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部