摘要
Online target maneuver recognition is an important prerequisite for air combat situation recognition and maneuver decision-making.Conventional target maneuver recognition methods adopt mainly supervised learning methods and assume that many sample labels are available.However,in real-world applications,manual sample labeling is often time-consuming and laborious.In addition,airborne sensors collecting target maneuver trajectory information in data streams often cannot process information in real time.To solve these problems,in this paper,an air combat target maneuver recognition model based on an online ensemble semi-supervised classification framework based on online learning,ensemble learning,semi-supervised learning,and Tri-training algorithm,abbreviated as Online Ensemble Semi-supervised Classification Framework(OESCF),is proposed.The framework is divided into four parts:basic classifier offline training stage,online recognition model initialization stage,target maneuver online recognition stage,and online model update stage.Firstly,based on the improved Tri-training algorithm and the fusion decision filtering strategy combined with disagreement,basic classifiers are trained offline by making full use of labeled and unlabeled sample data.Secondly,the dynamic density clustering algorithm of the target maneuver is performed,statistical information of each cluster is calculated,and a set of micro-clusters is obtained to initialize the online recognition model.Thirdly,the ensemble K-Nearest Neighbor(KNN)-based learning method is used to recognize the incoming target maneuver trajectory instances.Finally,to further improve the accuracy and adaptability of the model under the condition of high dynamic air combat,the parameters of the model are updated online using error-driven representation learning,exponential decay function and basic classifier obtained in the offline training stage.The experimental results on several University of California Irvine(UCI)datasets and real air combat target maneuver trajectory data validate the effectiveness of the proposed method in comparison with other semi-supervised models and supervised models,and the results show that the proposed model achieves higher classification accuracy.
基金
the support received from the Excellent Doctoral Dissertation Fund of Air Force Engineering University,China.