摘要
为提升高铁线路风速预测精度以保障强风下高速列车的运营安全,融合信号分解与排列熵提出高铁线路风速区间预测方法。采用信号分解技术与排列熵(PE)筛选分量,对不同复杂度分量分别利用门控循环单元分位数回归(QRGRU)和门控循环单元(GRU)构建高铁线路风速区间预测模型。对我国某高铁线路风速监测数据进行预测,结果表明:预测模型的预测精度较对比方法有显著提升,在区间预测上有良好表现,预测区间覆盖概率(PICP)、预测区间平均带宽(PINAW)及综合覆盖带宽指标(CWC)分别为94%、0.16、1.72,表明该方法能准确描述未来风速趋势,提升预测精度,对解决高铁安全运营问题具有实用价值。
In order to improve the wind speed prediction accuracy of high-speed railway lines and ensure the operation safety of high-speed trains under strong winds,a wind speed interval prediction method for high-speed railway lines is proposed by combining signal decomposition and permutation entropy.Signal decomposition technology and permutation entropy(PE)are used to screen components,and Quantile Regression with Gated Recurrent Unit(QRGRU)and Gated Recurrent Unit(GRU)are used to construct high-speed railway line wind speed interval prediction models for components of different complexity.The prediction of wind speed monitoring data of a high-speed railway line in China shows that the prediction accuracy of this prediction model is significantly improved compared with the comparison method,and it has a good performance in interval prediction,the Prediction Interval Coverage Probability(PICP),Prediction Interval Normalized Averaged Width(PINAW)and Coverage Width-based Criterion(CWC)are 94%,0.16 and 1.72 respectively.It shows that the method can accurately describe the future wind speed trend,improve the prediction accuracy,and has practical value in solving the problem of high-speed rail safety operation.
作者
过加锦
李磊
任俞霏
马祯
GUO Jiajin;LI Lei;REN Yufei;MA Zhen(Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology&Equipment of Zhejiang Province,Zhejiang Normal University,Jinhua 321004,China;College of Mathematics and Computer Science,Zhejiang Normal University,Jinhua 321004,China;College of Engineering,Zhejiang Normal University,Jinhua 321004,China;Institute of Computing Technology,China Academy of Railway Sciences Corporation Limited,Beijing 100081,China)
出处
《交通科技与经济》
2023年第4期74-80,共7页
Technology & Economy in Areas of Communications
基金
综合交通大数据应用技术国家工程实验室开放课题(DZYF20-06)
金华市公益性技术应用研究项目(2022-4-040)。
关键词
交通安全
风速区间预测
信号分解技术
排列熵
分位数回归
traffic safety
wind speed interval prediction
signal decomposition technique
permutation entropy
quantile regression