期刊文献+

基于特征优化的无参考光场图像质量评价

No-Reference Light Field Image Quality Assessment Based on Feature Optimization
下载PDF
导出
摘要 光场图像因其能够捕捉光的方向信息而备受学术界和产业界的广泛关注,然而,光场图像在压缩和重建过程中常会出现不同程度的失真,影响光场图像的后续处理和应用。因此,需要设计一个光场图像质量评估器来估计失真光场图像的质量。传统的光场图像评价方法在提取光场图像的空间特征和角度特征时,未充分考虑人眼视觉的多通道特性以及人眼对角度变化的敏感性,从而影响光场图像的质量评价结果。为此,提出一种无参考光场图像质量评价方法。设计多频带局部二值模式算法,提取光场图像的空间特征并利用优化提取的空间特征测量光场图像的空间质量。提出加权局部相位量化算法,该算法在对微透镜图像单元中提取的角度特征进行相位量化时,根据角度信息变化的强弱赋予不同的权值。在此基础上,将空间和角度纹理特征结合成一维特征向量,输入到已经训练的支持向量回归中,得到光场图像的质量分数。在Win5-LID和NBU-LF1.0数据集上的实验结果表明,该方法的斯皮尔曼等级相关系数分别为0.799 1和0.803 2,相比SSIM、FSIM、BRISQUE等方法,具有更优的质量评估准确性和稳定性。 Light Field Image(LFI)is receiving widespread attention from academia and industry owing to its ability to capture directional information from light.However,LFI oftens experiences varying degrees of distortion during compression and reconstruction,which affects the subsequent processing and applications.Accordingly,an LFI quality evaluator can be used to estimate the quality of distorted LFI.Traditional LFI assessment methods do not fully consider the multi-channel characteristics of human vision,or the sensitivity of the human eye to angular changes,when extracting spatial and angular features,thereby affecting the quality assessment results.This paper proposes a method for assessing the quality of no-reference LFI.The multi-band Local Binary Pattern(LBP)algorithm is designed to optimize and extract the spatial features of LFI to measure the images'spatial quality.A weighted Local Phase Quantization(LPQ)algorithm is also proposed to assign different weights according to the strength of angular changes when performing phase quantization on angular features extracted from Micro-Lens Image(MLI)units.On this basis,the spatial and angular texture features are combined into one-dimensional feature vectors,which are input into the trained Support Vector Regression(SVR)to obtain the LFI's quality score.Experimental results on the Win5-LID and NBU-LF1.0 datasets show that the Spearman Rank-order Correlation Coefficient(SRCC)of the proposed method is 0.7991 and 0.8032,respectively.Compared to methods such as SSIM,FSIM,and BRISQUE,the proposed approach exhibits better quality assessment accuracy and stability.
作者 徐正梅 刘华明 毕学慧 王亚 XU Zhengmei;LIU Huaming;BI Xuehui;WANG Ya(School of Computer and Information Engineering,Fuyang Normal University,Fuyang 236037,Anhui,China)
出处 《计算机工程》 CAS CSCD 北大核心 2023年第7期242-250,268,共10页 Computer Engineering
基金 国家自然科学基金(61906044) 安徽省高等学校自然科学重点项目(KJ2020ZD46,2022AH051324) 阜阳师范大学自然科学重点项目(2019FSKJ02ZD,2021FSKJ01ZD) 阜阳师范大学校级青年人才重点项目(rcxm202001,rcxm202106) 阜阳师范大学校级科研启动项目(2020KYQD0032) 阜阳师范大学市校合作项目(SXHZ202103) 阜阳师范大学科研创新团队项目(kytd202004)。
关键词 光场图像 无参考质量评价 多频带局部二值模式 空间特征 加权局部相位量化 角度特征 Light Field Image(LFI) no-reference quality assessment multi-band Local Binary Pattern(LBP) spatial feature weighted Local Phase Quantization(LPQ) angular feature
  • 相关文献

参考文献7

二级参考文献34

  • 1杨春玲,旷开智,陈冠豪,谢胜利.基于梯度的结构相似度的图像质量评价方法[J].华南理工大学学报(自然科学版),2006,34(9):22-25. 被引量:43
  • 2Shim S, Choi T. Image Indexing by Modified Color Co-occurrence Matrix[C] //Proc. of ICIP’03. Barcelona, Spain: [s. n.] , 2003.
  • 3Huang Jing, Kumary S R, Mitraz M, et al. Spatial Color Indexing and Applications[J]. International Journal of Computer Vision, 1999, 35(3): 245-268.
  • 4Lee H Y, Lee H K, Ha Y H. Spatial Color Descriptor for Image Retrieval and Video Segmentation[J]. IEEE Trans. on Multimedia, 2003, 5(3): 358-367.
  • 5Dony R D, Wesolkowski S. Edge Detection on Color Images Using RGB Vector Angles[C] //Proc. of IEEE Conf. on Electrical and Computer Engineering. Winnipeg, Canada: [s. n.] , 1999.
  • 6Wesolkowski S, Jernigan M E, Robert D D. Comparision of Color Image Edge Detectors in Multiple Color Spaces[C] //Proc. of International Conf. on Image Processing. [S. l.] : IEEE Computer Society, 2000.
  • 7Liu Ying, Zhang Dengsheng, Lu Guojun. A Survey of Content- based Image Retrieval with High-level Semantics[J]. Pattern Recognition, 2007, 40(1): 262-282.
  • 8Sun C W, Kwon P D, Jun P S. Efficient Use of MPEG-7 Edge Histogram Descriptor[J]. ETRI Journal, 2002, 24(1): 35-42.
  • 9陈永义,熊秋芬.支持向量机方法应用教程[M].北京:气象出版社,2011:2.
  • 10Chang Chih-Chung,Lin Chih-Jen.LibSVM:A Library for SupportVector Machines[EB/OL].[2010-03-22].http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部