摘要
提出一种下颌骨部分的自动提取与重建的方法,对颌面部CT图像使用U-Net神经网络自动分割出下颌骨部分,在移动立方体算法基础之上提出融合MCRC算法对分割结果进行三维模型重建,最后使用平滑处理优化模型表面。结果显示,该方法提高了实时交互绘制的能力,减少医生手动标注的工作量,可以有效减少三角面片的产生,改善模型显示效果,提高模型的结构清晰度与真实感,具有一定的实用价值。
An automatic extraction and reconstruction method of the mandible is proposed.The mandible is automatically segmented from the maxillofacial CT image using U-Net.Based on the marching cubes algorithm,a fusion MCRC algorithm is adopted to reconstruct the three-dimensional model of the segmentation results,and the model surface is optimized by smoothing.The results show that the method is of high practical value for it improves the ability of real-time interactive rendering,reduces the workload of manual annotation,effectively avoids the production of triangular patches,improves the display quality,and enhances the structural clarity and realism.
作者
陈籽聿
胡陟
CHEN Ziyu;HU Zhi(School of Electrical and Electronic Engineering,Shanghai University of Engineering Science,Shanghai 201620,China)
出处
《中国医学物理学杂志》
CSCD
2023年第7期841-846,共6页
Chinese Journal of Medical Physics
基金
国家自然科学基金青年项目(62003207)
中国博士后基金面上项目(2021M690629)。
关键词
下颌骨
CT图像
三维重建
自动分割
U-Net
mandible
CT image
three-dimensional reconstruction
automatic segentation
U-Net