摘要
目的/意义促进心力衰竭(heart failure,HF)管理运动训练的临床实践。方法/过程系统分析并整合相关文献、临床指南及专家共识,构建HF与运动训练知识图谱(knowledge graph,KG)。基于该KG,采用快速随机投影算法和K-邻近算法,构建图嵌入的推荐模型和个性化HF管理运动处方推荐系统。结果/结论HF与运动训练的KG共包括2703个实例和25161条关系。基于该KG,图嵌入的个性化推荐系统可提供安全、有效、多样的运动处方推荐。
Purpose/Significance To promote the clinical practice of exercise training intervention in the management of heart failure(HF).Method/Process The relevant literatures,clinical guidelines,and expert consensus are systematically analyzed and integrated,and a knowledge graph(KG)of HF and exercise training is constructed.Based on the KG,a graph embedding recommendation model and a personalized exercise prescription recommendation system for the management of HF are constructed by using the fast random projection algorithm and the K-nearest neighbors algorithm.Result/Conclusion In total,the KG of HF and exercise training includes 2703 instances and 25161 relations.Based on the KG,the graph-embedded personalized recommendation system provides safe,effective,and diverse exercise prescription recommendations.
作者
张珂
鲍婷
吴蓉蓉
吾尔满
沈百荣
ZHANG Ke;BAO Ting;WU Rongrong;WU Erman;SHEN Bairong(Institutes for Systems Genetics,Frontiers Science Center for Disease-related Molecular Network/West China Hospital,Sichuan University,Chengdu 610212,China)
出处
《医学信息学杂志》
CAS
2023年第6期72-78,共7页
Journal of Medical Informatics
基金
国家自然科学基金项目(项目编号:32270690)。
关键词
心力衰竭
运动处方
医学知识图谱
图嵌入
推荐系统
决策支持
heart failure(HF)
exercise prescription
medical knowledge graph(KG)
graph embedding
recommendation system
decision support