期刊文献+

基于YOLOv5的人员安全帽检测告警算法 被引量:1

Personnel Safety Helmet Detection and Alarm Algorithm Based on YOLOv5
下载PDF
导出
摘要 佩戴安全帽可有效保障作业人员安全,避免事故的发生,然而安全帽佩戴的实时监控问题却一直未得到良好的解决。为了缓解电力场所安全监控压力,基于YOLOv5目标检测算法设计了一套人员安全帽佩戴检测和危险区域告警算法,通过对锚框进行重聚类并引入注意力机制等对原始网络进行改进,结合公开数据集和自建数据集对网络进行训练,检测精度达到89.9%。最后通过Jetson Xavier NX等硬件设备将该算法部署到机器人上进行巡检,可实现对作业现场人员的实时监管,有效保障作业现场人员安全。 Wearing helmet can effectively ensure the safety of operators and avoid accidents.However,the problem of real-time monitoring of wearing helmets has not been well solved.In order to alleviate the pressure of safety monitoring of power sites,a set of safety helmet wearing detection and dangerous area alarm algorithms are designed based on YOLOv5 target detection algorithm.The original network was improved by clustering anchor frames and introducing attention mechanisms.The network is trained using both public and self-built datasets,with a detection accuracy of 89.9%.Finally,the algorithm is deployed to the robot for inspection through hardware devices such as Jetson Xavier NX,which can realize real-time supervision of job site personnel and effectively ensure the safety of job site personnel.
作者 李佳 段祥骏 张步红 李运硕 冯德志 LI Jia;DUAN Xiangjun;ZHANG Buhong;LI Yunshuo;FENG Dezhi(China Electric Power Research Institute Co.,Ltd.,Beijing 100192,China;School of Aerospace,Northwestern Polytechnical University,Xi′an 710075,China)
出处 《电工技术》 2023年第10期36-41,共6页 Electric Engineering
基金 国家电网有限公司总部科技项目“基于机器视觉深度学习的配网工程强化管控技术研究”(编号5400-202116141A-0-0-00)。
关键词 YOLOv5 安全帽检测 电力安保 YOLOv5 helmet detection power security
  • 相关文献

参考文献10

二级参考文献103

  • 1王家宝,傅浩,孙琼,徐爱文,潘尧.变电站辅助设施智能运维管控系统的研发与应用[J].科技通报,2020(1):70-73. 被引量:18
  • 2Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2) 91 110.
  • 3Dalai N, Triggs B. Histograms of oriented gradients for human detection[C]//Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society Conference on. San Diego, USA: IEEE, 2005, 1 886-893.
  • 4Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786) : 504-507.
  • 5Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the catrs visual cortex[J]. The Journal of Physiology, 1962, 160(1): 106-154.
  • 6Fukushima K, Miyake S. Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in posi- tion[J]. Pattern Recognition, 1982, 15(6): 455-469.
  • 7Ruck D W, Rogers S K, Kabrisky M. Feature selection using a multilayer perceptron[J]. Journal of Neural Network Com- puting, 1990, 2(2): 40-48.
  • 8Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986,3231 533 538.
  • 9LeCun Y, Denker J S, Henderson D, et al. Handwritten digit recognition with a back-propagation network[C]//Advances in Neural Information Processing Systems. Colorado, USA Is. n. ], 1990: 396-404.
  • 10LeCun Y, Cortes C. MNIST handwritten digit database[EB/OL], http//yann, lecun, com/exdb/mnist, 2010.

共引文献798

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部