期刊文献+

机器学习在植物工厂中的研究现状与挑战

Machine Learning in Plant Factory:Current Status and Challenges
下载PDF
导出
摘要 为有效缓解来自人口、环境和资源方面的压力,发展植物工厂非常重要。智慧植物工厂是设施农业发展的高级阶段,研究如何将机器学习应用在植物工厂中有效提高生产效率,促使植物工厂向智能化方向发展是一个重要的新课题。通过将机器学习与作物表型研究相结合,建立作物生长模型,并应用到生长环境监测中(病、虫、草、旱涝、营养等),及精准调控植物工厂室内环境及营养液智能调控等方式中,解决好中国植物工厂成本高、作物产量低的问题,助力植物工厂向信息化、自动化、智能化、精准化和个性化方向发展。 To effectively relieve the pressure from population,environment and resources,it is very important to develop plant factory.Intelligent plant factory is an advanced stage in the development of facility agriculture.It is a new topic to study how to apply machine learning in plant factory to effectively improve the production efficiency and promote the intelligent development of plant factory.Combining machine learning with crop phenotype study,a crop growth model is established and applied to plant growth environment monitoring(diseases,insects,grass,drought and water logging,nutrition,etc.),accurate plant factory indoor environment regulation,and intelligent nutrient solution regulation etc.,so as to solve the problem of high cost and low crop yield of plant factories in China.The study can help plant factories develop towards the one with information technology,automation,intelligence,precision and individuation.
作者 孙博 李靖 王静 SUN Bo;LI Jing;WANG Jing(College of Architectural Engineering of Yunnan Agricultural University,Kunming 650500;College of Water Resources and Hydraulic Engineering of Yunnan Agriculture University,Kunming 650500)
出处 《中国农学通报》 2023年第18期142-150,共9页 Chinese Agricultural Science Bulletin
基金 云南省重大科技专项计划项目“云南高原特色数字农业关键技术研发与示范”(202002AE090010)。
关键词 机器学习 植物工厂 研究 现状 挑战 machine learning plant factory research current status challenge
  • 相关文献

参考文献9

二级参考文献146

共引文献487

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部