期刊文献+

对数正态多层贝叶斯模型的参数估计

Parameter estimation of lognormal multilayer Bayesian model
下载PDF
导出
摘要 为了更好地捕捉呈偏态分布数据的变化,提高统计推断的精确度,将对数正态多层先验分布的构造方法与贝叶斯定理结合建立了对数正态多层贝叶斯模型。利用Gibbs抽样算法对各未知参数进行贝叶斯估计,并对使用Gibbs算法所生成的迭代链进行收敛性诊断。随机模拟结果显示,在相对误差、均方误差(MSE)准则下,贝叶斯估计的效果较似然估计更优。最后,通过实证分析证明了所建立的模型是切实可行的。 In order to better capture the changes of skewed distribution data and improve the accuracy of statistical inference,this paper combines the construction method of lognormal multilayer prior distribution with Bayesian theorem to establish a lognormal multilayer Bayesian model.The Gibbs sampling algorithm is used to estimate the unknown parameters,and the convergence of the iterative chain generated by the Gibbs algorithm is diagnosed.The random simulation results show that the Bayesian estimation is better than the maximum likelihood estimation under the relative error and MSE(mean square error)criteria.Finally,the empirical analysis proves that the established model is feasible.
作者 王志凯 黄介武 Wang Zhikai;Huang Jiewu(School of Data Science and Information Engineering,Guizhou Minzu University,Guiyang 550025,China)
出处 《湖南文理学院学报(自然科学版)》 CAS 2023年第3期12-19,共8页 Journal of Hunan University of Arts and Science(Science and Technology)
基金 贵州省科技计划基金项目(黔科合基础[2017]1083号) 贵州省基础研究计划(软科学)(黔科合支[2019]20001)。
关键词 正态多层贝叶斯模型 对数正态多层贝叶斯模型 贝叶斯估计 Gibbs算法 normal multilayer Bayesian model lognormal multilayer Bayesian model Bayesian estimation Gibbs algorithm
  • 相关文献

参考文献4

二级参考文献48

  • 1Smith AFM, Roberts GO. Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods. Joumal of the Royal Statistical Society ( Series B ), 1993,55 ( 1 ) : 3-23.
  • 2Tu XM, Kowalski J, Jia G. Bayesian analysis of prevalence with covari- ates using simulation based techniques:applications to HIV screening. Statistics in Medicine, 1999,18 (22) : 3059-3073.
  • 3Lindley DV, Smith AFM. Bayes estimates for the linear model. Journal of the Royal Statistical Society ( Series B ), 1972,34 ( 1 ) : 1-41.
  • 4Daniels MJ. A prior for the variance in hierarchical models. Canadian Journal of Statistics, 1999,27 ( 3 ) :567-578.
  • 5王显红.日本血吸虫病贝叶斯时空模型的建立.北京:中国疾病预防控制中心,2007.
  • 6Su Z, Peterman RM, Haeseker SL. Spatial hierarchical Bayesian models for stock-recruitment analysis of pink salmon (Oncorhynchusgorbus- cha). Canadian Journal of Fisheries and Aquatic Sciences, 2004,61 (12) :2471-2486.
  • 7Kazembe LN,Namangale JJ. A Bayesian multinomial model to analyse spatial patterns of childhood co-morbidity in Malawi. European journal of Epidemiology ,2007,22 ( 8 ) :545-556.
  • 8Su Z, Adkison MD, Van Alen BW. A hierarchical Bayesian model for estimating historical salmon escapement and escapement timing. Canadi- an Journal of Fisheries and Aquatic Sciences ,2001,58 (8) :1648-1662.
  • 9Kelsall JE, Diggle PJ. Spatial variation in risk of disease:a nonparamet- ric binary regression approach. Journal of the Royal Statistical Society (Series C) , 1998,47 (4) :559-573.
  • 10Ntzoufras I. Bayesian modeling using WinBUGS. Wiley. com ,2011.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部