期刊文献+

A joint image compression and encryption scheme based on a novel coupled map lattice system and DNA operations

原文传递
导出
摘要 In this paper,an efficient image encryption scheme based on a novel mixed linear–nonlinear coupled map lattice(NMLNCML)system and DNA operations is presented.The proposed NMLNCML system strengthens the chaotic characteristics of the system,and is applicable for image encryption.The main advantages of the proposed method are embodied in its extensive key space;high sensitivity to secret keys;great resistance to chosen-plaintext attack,statistical attack,and differential attack;and good robustness to noise and data loss.Our image cryptosystem adopts the architecture of scrambling,compression,and diffusion.First,a plain image is transformed to a sparsity coefficient matrix by discrete wavelet transform,and plaintext-related Arnold scrambling is performed on the coefficient matrix.Then,semi-tensor product(STP)compressive sensing is employed to compress and encrypt the coefficient matrix.Finally,the compressed coefficient matrix is diffused by DNA random encoding,DNA addition,and bit XOR operation.The NMLNCML system is applied to generate chaotic elements in the STP measurement matrix of compressive sensing and the pseudo-random sequence in DNA operations.An SHA-384 function is used to produce plaintext secret keys and thus makes the proposed encryption algorithm highly sensitive to the original image.Simulation results and performance analyses verify the security and effectiveness of our scheme.
出处 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2023年第6期813-827,共15页 信息与电子工程前沿(英文版)
基金 supported by the National Natural Science Foundation of China(Nos.11901297 and 61973078)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部