期刊文献+

加筋路径驱动的板壳自适应等几何屈曲分析 被引量:2

ADAPTIVE ISOGEOMETRIC BUCKLING ANALYSIS OF STIFFENED PANELS DRIVEN BY STIFFENER PATHS
下载PDF
导出
摘要 加筋薄壁结构常被用于航空航天结构的轻量化设计.随着结构尺寸和几何特征的增加,需要更加精细的网格来满足分析精度的要求.传统的等几何方法采用NURBS张量积形式的拓扑结构,使得在分析过程中难以实现局部细化,而全局细化则会增加不必要的自由度.为了提升加筋板壳结构的数值分析精度和效率,提出一种基于RPHT (rational polynomial splines over hierarchical T-meshes)样条的加筋板壳自适应等几何屈曲分析方法.样条网格可以沿着加筋路径进行自适应的局部细化,有效提升低自由度下加筋板壳结构等几何屈曲分析的精度.首先,蒙皮和筋条分别采用RPHT样条曲面和NURBS样条曲线进行建模,几何建模与数值仿真采用统一的几何语言,实现建模与分析的一体化.其次,采用几何投影算法和样条插值算法实现筋条与蒙皮之间的高效高精度强耦合,并建立基于加筋路径驱动自适应网格细化方法.最后,曲线加筋板和网格加筋壳两个算例验证本方法的高效性和鲁棒性,通过与基于NURBS的等几何分析进行对比,本方法能够明显降低分析模型的总自由度. The stiffened thin-walled structures are broadly used in the lightweight design of aerospace structures.With the increase in structure size and geometric characteristics,more refined meshes are needed to meet the requirements of analysis accuracy.The conventional isogeometric method adopts the topological structure in the form of NURBS tensor product,which makes it challenging to achieve local refinement in the analysis process,and global refinement will increase unnecessary degrees of freedom.In order to improve the accuracy and efficiency of numerical analysis of stiffened plate and shell structures,an adaptive isogeometric buckling analysis method based on RPHT-spline(rational polynomial splines over hierarchical T-meshes)for stiffened structures is presented in this paper.The spline mesh can be refined locally and adaptively along the stiffener paths,which effectively improves the accuracy of isogeometric buckling analysis of stiffened panels with low degrees of freedom.Firstly,the skins and stiffeners are modelled using RPHT-spline surfaces and NURBS curves, respectively. The geometric modeling and numerical simulation adopt a unified geometriclanguage to achieve the integration of modelling and analysis. Secondly, the geometric projection algorithm and splineinterpolation algorithm are used to achieve the high-efficiency and high-precision strong coupling between skins andstiffeners. In addition, an adaptive mesh refinement method driven by the stiffener paths is established. Finally, twonumerical examples, a curve stiffened plate and a grid stiffened shell, verify the efficiency and robustness of the proposedmethod. Compared with NURBS-based isogeometric analysis, the proposed method can significantly reduce the totaldegrees of freedom of the analysis model.
作者 金灵智 王禹 郝鹏 张越一 王博 Jin Lingzhi;Wang Yu;Hao Peng;Zhang Yueyi;Wang Bo(Department of Engineering Mechanics,Dalian University of Technology,Dalian 116024,Liaoning,China;State Key Laboratory of Structural Analysis for Industrial Equipment,Dalian 116024,Liaoning,China;Key Laboratory of Digital Twin for Industrial Equipment of Liaoning Province,Dalian 116024,Liaoning,China)
出处 《力学学报》 EI CAS CSCD 北大核心 2023年第5期1151-1164,共14页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金资助项目(11825202)。
关键词 等几何分析 PHT样条 自适应网格细化 加筋板壳 屈曲分析 isogeometric analysis PHT-spline adaptive mesh refinement stiffened panels buckling analysis
  • 相关文献

参考文献3

二级参考文献26

  • 1丁晓红,李国杰,蔡戈坚,山崎光悦.薄板结构的加强筋自适应成长设计法[J].中国机械工程,2005,16(12):1057-1060. 被引量:25
  • 2荣晓敏,徐元铭,吴德财.进化神经网络在复合材料格栅结构设计中的应用[J].固体火箭技术,2006,29(4):305-309. 被引量:6
  • 3赵良玉,杨树兴,佘浩平.火箭弹气动学科代理模型构建方法研究[J].固体火箭技术,2007,30(1):1-4. 被引量:7
  • 4Cheng K T, Olhoff N. An investigation concerning optimal design of solid elastic plates[J]. International Journal of Solids and Structures, 1981, 17(3) : 305-323.
  • 5Lam Y C, Santhikumar S. Automated rib location and optimization for plate structures[J]. Structural Multidisciplinary Optimization, 2003, 25(1): 35-45.
  • 6Luo J, Gea H C. A systematic topology optimization ap proaeh for optimal stiffener design[J]. Structural Optimization, 1998, 16(4): 280-288.
  • 7Krog L A, Olhoff N. Optimum topology and reinforcement design of disk and plate structures with multiple stiffness and eigenfrequency objectives[J]. Computers and Structures, 1999, 72(4/5) : 535-563.
  • 8Afonso S M B, Belblidia F, Sienz J. Design of plates and shells using several optimization strategies[R]. AIAA- 2004- 4416, 2004.
  • 9Bojezuk D, Szteleblak W. Optimization of layout and shape of stiffeners in 2D structures[J]. Computers and Structures, 2008, 86(13/14): 1436-1446.
  • 10Zhou M, Fleury R, Shyy Y K, et al. Progress in topology optimization with manufacturing constrains[R]. AIAA- 2002-5614, 2002.

共引文献29

同被引文献18

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部