期刊文献+

钐掺杂改性γ-Al_(2)O_(3)粉体的热稳定性研究

Study on Thermal Stability of γ-Al_(2)O_(3) Powders Modified by Samarium Doping
下载PDF
导出
摘要 以硝酸铝(Al(NO_(3))_(3)·9H_(2)O)为氧化剂,甘氨酸(C_(2)H_(5)NO_(2))为还原剂,硝酸钐(Sm(NO_(3))_(3)·6H_(2)O)为改性剂,通过溶液燃烧法合成了γ-Al_(2)O_(3)粉体。采用XRD、SEM、BET、TG-DTG等手段对产物进行表征,并分析探讨了焙烧温度、改性剂添加量对产物物相的影响。实验结果表明:在硝酸铝(Al(NO_(3))_(3)·9H_(2)O)与甘氨酸(C_(2)H_(5)NO_(2))的物质的量之比为3∶5,改性剂Sm(NO_(3))_(3)·6H_(2)O添加量为1%,焙烧温度为1025℃,焙烧时间为4 h的条件下可以制备具有较高热稳定性的γ-Al_(2)O_(3)粉体,且该粉体具有比表面积较大、结构稳定等特点,可以作为催化剂的载体。 Using aluminum nitrate(Al(NO_(3))_(3)·9H_(2)O)as the oxidizing agent,glycine(C_(2)H_(5)NO_(2))as the reducing agent,and samarium nitrate(Sm(NO_(3))_(3)·6H_(2)O)as the modifier,γ-Al_(2)O_(3) powders were synthesized by solution combustion method.The products were characterized by XRD,SEM,BET and TG-DTG.The effects of roasting temperature and modifier addition on the phase of the products were analyzed and discussed.The experimental results show that theγ-Al_(2)O_(3) powders with high thermal stability could be prepared under the molar ratio of aluminum nitrate(Al(NO_(3))_(3)·9H_(2)O)to glycine(C_(2)H_(5)NO_(2))of 3∶5,addition of modifier Sm(NO_(3))_(3)·6H_(2)O of 1%,roasting temperature of 1025℃,and roasting time of 4 h.And theγ-Al2O(3)powders have the characteristics of large specific surface area and stable structure,which can be used as the carrier of catalyst.
作者 王立明 贾雅薇 孟竺 付丽婷 吴静 宋丽娟 储刚 WANG Li-ming;JIA Ya-wei;MENG Zhu;FU Li-ting;WU Jing;SONG Li-juan;CHU Gang(School of Petrochemical Engineering,Liaoning Petrochemical University,Fushun 113001,China;Engineering Training Center,Liaoning Petrochemical University,Fushun 11300l,China)
出处 《稀有金属与硬质合金》 CAS CSCD 北大核心 2023年第3期47-51,64,共6页 Rare Metals and Cemented Carbides
基金 国家自然科学基金项目(U1908203)。
关键词 溶液燃烧法 钐掺杂 硝酸钐 γ-Al_(2)O_(3) 改性 热稳定性 solution combustion method samarium doping samarium nitrate γ-Al_(2)O_(3) modification thermal stability
  • 相关文献

参考文献1

二级参考文献23

  • 1Agarwal M, Chauhan G, Chaurasia S P, Singh K. J Taiwan Inst Chem Eng, 2012, 43: 89.
  • 2Zhang X W, Huang W J. J Nat Gas Chem, 2011, 20(3): 299.
  • 3Chisti Y. Biotech Advances, 2007, 25: 294.
  • 4Li Y H, Qiu F X, Yang D Y, Li X H, Sun P. Biom Bioen, 2011, 35: 2787.
  • 5Chen Y H, Huang Y H, Lin R H, Shang N C, Chang C Y, Chang C C, Chiang P C, Hu C Y. J Taiwan Inst Chem Eng, 2011, 42: 937.
  • 6Baroutian S, Aroua M K, Raman A A A, Sulaiman N M N. Fuel Proces Technol, 2010, 91: 1378.
  • 7Soetaredjo F E, Ayucitra A, Ismadji S, Maukar A L. Appl Clay Sci, 2011, 53: 341.
  • 8Noiroj K, Intarapong P, Luengnaruemitchai A, Jai-In S. Renew Enery, 2009, 34: 1145.
  • 9Wang J X, Chen G T, Chen C C. Chin J Catal (Cuihua Xuebao), 2011, 32(10): 1592.
  • 10Ma H, Li S, Wang B, Wang R, Tian S. J Ameri Oil Che Soc, 2008, 85: 263.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部