期刊文献+

基于1DCNN-LSTM船舶辅锅炉故障预测方法

Fault prediction of marine auxiliary boiler based on 1DCNN - LSTM
下载PDF
导出
摘要 为适应船舶辅锅炉智能化的新要求,提高船舶辅锅炉故障预测的可靠性,采用深度学习方法对船舶辅锅炉进行故障预测研究。在长短时记忆(Long Short-Term Memory,LSTM)神经网络船舶辅锅炉故障预测模型的基础上,采用一维卷积神经网络(1-Dimensional Convolutional Neural Network,1 DCNN)对船舶辅锅炉原始数据进行特征提取和初步分类,以解决LSTM模型在学习数据特征的局限性及对时序数据顺序的依赖性。选取阿法拉伐OS-TCI型船用燃油辅锅炉为研究对象,结合大连海事大学开发的DMS-CSS型轮机模拟器中的船舶辅锅炉仿真模块进行试验研究。采用实船采集的时间序列数据和模拟器采集的故障数据为试验数据来源,分别应用LSTM模型和1DCNNLSTM模型构建船舶辅锅炉故障预测模型并进行了试验对比研究。试验结果表明:1DCNN-LSTM模型相较于LSTM模型其均方误差和均方根误差分别减小了0.0075和0.033,同时减小了拟合误差,提高了预测的可靠性。 Deep Learning Technology is introduced into fault prediction algorithm of marine auxiliary boiler.The long shortterm memory(LSTM)neural network is used to build the prediction model.The source data is processed by 1D Convolutional Neural Network to extract features and do preliminary classification.This process is to overcome the limitation of LSTM model in types of learning data feature and the dependence on the sequence of time series data.Both real data from Alfa Laval OS TCI marine oil fuel auxiliary boiler on board and simulating data set generated by DMS-CSS marine engine simulator are processed by the model for verification.Meantime a LSTM model does the same job for comparison.Experiments show that the mean square error and root-mean-square error of the output from 1DCNN-LSTM model are reduced by 0.0075 and 0.033 respectively compared to those from LSTM model.
作者 胡国彤 甘辉兵 丛玉金 刘义 王世威 HU Guotong;GAN Huibing;CONG Yujin;LIU Yi;WANG Shiwei(Marine Engineering College,Dalian Maritime University,Dalian 116026,China;The 714 Research Institute of CSSC,Beijing 100101,China)
出处 《中国航海》 CSCD 北大核心 2023年第2期135-143,共9页 Navigation of China
基金 辽宁省科学技术计划揭榜挂帅项目(2022020637-JH1/108)。
关键词 船舶辅锅炉 故障预测 一维卷积神经网络 长短时记忆神经网络 marine auxiliary boiler fault prediction 1D convolutional neural network long short-term memory neural network
  • 相关文献

参考文献7

二级参考文献99

  • 1Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2) 91 110.
  • 2Dalai N, Triggs B. Histograms of oriented gradients for human detection[C]//Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society Conference on. San Diego, USA: IEEE, 2005, 1 886-893.
  • 3Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786) : 504-507.
  • 4Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the catrs visual cortex[J]. The Journal of Physiology, 1962, 160(1): 106-154.
  • 5Fukushima K, Miyake S. Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in posi- tion[J]. Pattern Recognition, 1982, 15(6): 455-469.
  • 6Ruck D W, Rogers S K, Kabrisky M. Feature selection using a multilayer perceptron[J]. Journal of Neural Network Com- puting, 1990, 2(2): 40-48.
  • 7Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986,3231 533 538.
  • 8LeCun Y, Denker J S, Henderson D, et al. Handwritten digit recognition with a back-propagation network[C]//Advances in Neural Information Processing Systems. Colorado, USA Is. n. ], 1990: 396-404.
  • 9LeCun Y, Cortes C. MNIST handwritten digit database[EB/OL], http//yann, lecun, com/exdb/mnist, 2010.
  • 10Waibe[ A, Hanazawa T, Hinton G, et al. Phoneme recognition using time-delay neural networks[J]. Acoustics, Speech and Signal Processing, IEEF. Transactions on, 1989, 37(3): 328-339.

共引文献2258

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部