期刊文献+

求解耦合非线性Klein-Gordon-Schrödinger方程的能量稳定方法 被引量:1

Energy Stable Method for Coupled Nonlinear Klein-Gordon-Schrödinger Equation
下载PDF
导出
摘要 研究基于指数标量辅助变量方法的耦合非线性Klein-Gordon-Schrödinger方程有效数值方法.首先,采用指数标量辅助变量处理方程的非线性项,构造求解方程的无条件能量稳定格式;然后,对方程在时间方向上采用Crank-Nicolson格式进行离散,在空间方向上采用紧致差分格式进行离散,证明全离散格式的修正能量守恒律.最后,通过数值算例进行验证.结果表明:文中格式具有有效性,修正能量具有守恒性. The efficient numerical method of coupled nonlinear Klein-Gordon-Schr dinger equation based on exponential scalar auxiliary variable method is studied.Firstly,the nonlinear terms of the equation are treated with exponential scalar auxiliary variables,and an unconditional energy stable scheme is constructed to the solution of the equation.Then,the equation is discretized by Crank-Nicolson scheme in time direction and by compact difference scheme in space direction,the modified energy conservation law of the full discrete scheme is proved.Finally,it is verified by numerical examples that the proposed scheme is effective and the modified energy is conserved.
作者 郭姣姣 庄清渠 GUO Jiaojiao;ZHUANG Qingqu(School of Mathematical Sciences,Huaqiao University,Quanzhou 362021,China)
出处 《华侨大学学报(自然科学版)》 CAS 2023年第4期533-540,共8页 Journal of Huaqiao University(Natural Science)
基金 国家自然科学基金资助项目(11771083) 福建省自然科学基金资助项目(2021J01306)。
关键词 耦合非线性Klein-Gordon-Schrödinger方程 指数标量辅助变量方法 修正能量 守恒律 coupled nonlinear Klein-Gordon-Schrödinger equation exponential scalar auxiliary variable method modified energy conservation law
  • 相关文献

参考文献3

二级参考文献58

  • 1Griffiths D J. Introduction to Quantum Mechanics. Englewood Cliffs, N J: Prentice-Hall, 1995.
  • 2Menyuk C R. Stability of solitons in birefringent optical fibers. J Opt Soc Amer B Opt Phys, 1998, 5:392-402.
  • 3Wadati M, Izuka T, Hisakado M. A coupled nonlinear Schrodinger equation and optical solitons. J Phys Soc Japan, 1992, 61:2241-2245.
  • 4Akrivis G D. Finite difference discretization of the cubic SchrSdinger equation. IMA J Numer Anal, 1993, 13:115-124.
  • 5Chan T, Shen L. Stability analysis of difference schemes for variable coefficient SchrSdinger type equations. SIAM J Numer Anal, 1987, 24:336-349.
  • 6Chang Q, Jia E, Sun W. Difference schemes for solving the generalized nonlinear SchrSdinger equation. J Comput Phys, 1999, 148:397-415.
  • 7Dai W. An unconditionally stable three-level explicit difference scheme for the Schr6dinger equation with a variable coefficient. SIAM J Numer Anal, 1992, 29:174-181.
  • 8Dehghan M, Taleei A. A compact split-step finite difference method dor solving the nonlinear SchrSdinger equations with constant and variable coefficients. Comput Phys Comm, 2010, 181:43-51.
  • 9Ivanauskas F, Radzifinas M. On convergence and stability of the explicit difference method for solution of nonlinear SchrSdinger equations. SIAM J Numer Anal, 1999, 36:1466-1481.
  • 10Nash P L, Chen L Y. Efficient difference solutions to the time-dependent SchrSdinger equation. J Comput Phys, 1997, 130:266-268.

共引文献20

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部