期刊文献+

基于神经网络的变压器故障声识别研究

Research on Transformer Fault Sound Recognition Based on Neural Network
下载PDF
导出
摘要 作为新兴的变压器故障识别技术,声音识别对于变压器故障的识别尤为重要,然而在声音识别过程中,常常受到环境中其他声音的影响而降低识别的准确率,基于此,文章提出一种基于MFCC声音特征提取以及人工神经网络(ANN)模型相结合的变压器故障声音识别的方法,为了提高模型的训练精度,文章对比分析了Levenberg-Marquardt算法、Bayesian Regularization算法以及Scaled Conjugate Gradient算法的收敛性与准确性,选取收敛速度快、误差较小的Levenberg-Marquardt算法来实现ANN模型的误差反向传播并完成故障诊断的验证,验证结果表明,文章所采用的模型对于100个验证样本数据的预测准确率为92%,最终证实模型能够很好的应用于变压器故障的声识别。 As a new transformer fault identification technology,sound recognition is significant for transformer fault identification.However,in the process of sound recognition,the accuracy of transformer fault recognition is often reduced by the influence of other sounds in the environment.This paper proposes a sound recognition method for transformer fault based on MFCC sound feature extraction and the ANN model.To improve the training accuracy of the model,the convergence and accuracy of the Levenberg-Marquardt algorithm,the Bayesian Regularization algorithm,and the Scaled Conjugate Gradient algorithm are compared and analyzed.The Levenberg-Marquardt algorithm with fast convergence speed and small error is selected to realize the error backpropagation of the ANN model and verification of fault diagnosis.The verification results show that the model's prediction accuracy is 92%for the data of 100 verification samples,which finally proves that the model can be well applied to the acoustic identification of transformer faults.
作者 赵斌财 林骞 于凯 孟博 ZHAO Bin-cai;LIN Qian;YU Kai;MENG Bo(Weifang Power Supply Company of State Grid Shandong Electric Power Company,Weifang 261000 China)
出处 《自动化技术与应用》 2023年第7期16-19,共4页 Techniques of Automation and Applications
关键词 神经网络 变压器 故障声识别 MFCC neural network transformer fault sound identification MFCC
  • 相关文献

参考文献10

二级参考文献102

  • 1张文增,陈强,都东,孙振国.直线检测的灰度投影积分方法[J].清华大学学报(自然科学版),2005,45(11):1446-1449. 被引量:22
  • 2刘小芳.点密度加权FCM算法的聚类有效性研究[J].计算机工程与应用,2006,42(15):20-22. 被引量:8
  • 3熊虎岗,程浩忠,李宏仲.基于免疫算法的多目标无功优化[J].中国电机工程学报,2006,26(11):102-108. 被引量:86
  • 4赵力.语音信号处理[M].北京:机械工业出版社,2010.
  • 5Klapuri.Audio signal classification[R].ISMIR Graduate School, 2004.
  • 6Gerhard D.Audio signal classification: history and cur- rent techniques[R].Department of Computer Science, University of Regina, Regina, Canada, 2007-11.
  • 7Shin W H, Lee B-S, Lee Y-K, et al.Speech/non-speech classification using multiple feature for robust endpoint[C]// IEEE International Conference on Detection, Acoustics, Speech, and Signal Processing (ICASSP2000) , 2000, 3: 1399-1402.
  • 8Cowling M, Sitte R.Analysis of speech recognition tech- niques for use in a non-speech sound recognition sys- tem[M]//Honray B,Wysocki T,Darnell M.Advanced Sig- nal Processing for Commtuaication Systems.[S.1.]: Kluwer Academic Publishers, 2004:131-46.
  • 9Cowling M.Non-speech environmental sound classifica- tion systems for autonomous surveillance[D].School of Information Technology, G~:iffith University, Gold Coast Campus, 2004.
  • 10Barry S J, Dane A D, Alya H, et al.The automatic rec- ognition and counting of cough[J].Cough,2006,2(8).

共引文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部