摘要
针对现有的语义通信系统对先验知识利用不够充分、接收端解码能力有限的问题,提出了一个知识增强的语义通信框架。在这个框架中,接收端可以利用知识库中的先验知识进行语义推理和解码,同时不需要对发送端的神经网络结构进行额外的修改。具体而言,在语义接收端的基础上,设计了一个基于Transformer的知识提取器来为接收到的含噪信号寻找语义相关的知识三元组,以用于语义解码。在WebNLG数据集上的仿真结果表明,所提框架在知识图谱增强解码的基础上产生了明显的性能提升。
To address the problem that existing semantic communication do not make sufficient use of prior knowledge and have limited decoding capability at the receiver side,a knowledge enhanced semantic communication framework was proposed,in which the receiver could more actively utilize the prior knowledge in the knowledge base for semantic reasoning and decoding,without extra modifications to the neural network structure of the transmitter.Specifically,a transformer-based knowledge extractor was designed to find relevant factual triples for the received noisy signal.Extensive simulation results on the WebNLG dataset demonstrate that the proposed framework has significantly improved performance on the basis of knowledge graph enhanced decoding.
作者
李荣鹏
汪丙炎
张宏纲
赵志峰
LI Rongpeng;WANG Bingyan;ZHANG Honggang;ZHAO Zhifeng(College of Information Science and Electronic Engineering,Zhejiang University,Hangzhou 310027,China;Zhejiang Lab,Hangzhou 311121,China)
出处
《通信学报》
EI
CSCD
北大核心
2023年第6期70-76,共7页
Journal on Communications
基金
国家自然科学基金资助项目(No.62071425)
浙江省“领雁”基金资助项目(No.2022C01093)
华为公司合作基金资助项目
浙江省杰出青年基金资助项目(No.LR23F010005)。
关键词
语义通信
知识图谱
深度学习
知识提取
语义解码
semantic communication
knowledge graph
deep learning
knowledge extraction
semantic decoding