期刊文献+

基于改进麻雀搜索算法的移动机器人路径规划 被引量:4

Mobile robot path planning based on improved SSA
下载PDF
导出
摘要 麻雀搜索算法(SSA)是移动机器人路径规划中的一种高效方法,但存在易陷入局部最优解,种群多样性较差的问题。针对以上问题,首先,提出一种Tent混沌映射增加种群多样性,使粒子脱离局部极值;其次,引入方向因子来减少尖峰拐点;最后,使用三次样条插值来平滑路径,使路径更平滑。仿真实验结果表明:在不同的静态环境中,通过对比A*算法、蚁群算法和传统的SSA,改进后的SSA(ISSA)极大限地增加了初始种群的有效性,有效缩短了路径长度、减少了转折点次数,得到更平滑的路径,证明了算法的可行性。 Sparrow search algorithm(SSA)is an efficient method in path planning of mobile robots,but it is easy to fall into a local optimal solution and the population diversity is poor.To solve the above problems,firstly,a Tent chaotic mapping is proposed to increase the diversity of the population and make the particles deviate from the local extreme value.Secondly,a directional factor is introduced to reduce the peak inflection point.Finally,cubic spline interpolation is used to smooth the path and make the path smoother.The simulation experiment results show that in different static environments,by comparing the Aalgorithm,the ant colony algorithm and the traditional SSA,the improved SSA(ISSA)greatly increases the effectiveness of the initial population,effectively shortens the path length and reduces number of turning points,and a smoother path is obtained,which proves the feasibility of the algorithm.
作者 戈一航 杨光永 于元滐 徐天奇 马晨浩 GE Yihang;YANG Guangyong;YU Yuanjie;XU Tianqi;MA Chenhao(School of Electrical Information Engineering,Yunnan Minzu University,Kunming 650000,China;School of Information and Electrical Engineering,Hebei University of Engineering,Handan 056000,China)
出处 《传感器与微系统》 CSCD 北大核心 2023年第7期132-135,共4页 Transducer and Microsystem Technologies
基金 国家自然科学基金资助项目(61761049,61261022)。
关键词 路径规划 麻雀搜索算法 TENT映射 方向因子 样条插值 path planning sparrow search algorithm(SSA) Tent mapping direction factor spline interpolation
  • 相关文献

参考文献8

二级参考文献70

  • 1杨余旺,杨静宇,龚璐.Level Set方法求解机器人路径规划的探讨[J].中国图象图形学报,2005,10(9):1139-1145. 被引量:2
  • 2Chen L, Aihara K. Global search ability of chaotic neural networks [J]. IEEE Trans on Circuits Systems, 1999, 46 (8) : 974-993.
  • 3Feng J, Ying W Y. Pattern search algorithm an its application research in three-dimensional component layout [J]. J of Wuhan University of Technology,2003,27(2) :280-284.
  • 4Willms A R,Yang S X. An efficient dynamic system for realtime robot-path planning[J].IEEE Transactions on Systems Man and Cybernetics Part B:Cybernetics,2006,(04):755-766.
  • 5Zhang Y,Zhang L,Zhang X H. Mobile robot path planning base on the hybrid genetic algorithm in unknown environment[A].China:Taiwan,2008.661-665.
  • 6Hassanzadeh I,Madani K,Badamchizadeh M A. Mobile robot path planning based on shuffled frog leaping optimization algorithm[A].Canada:Ontario,2010.680-685.
  • 7Guo J M,Liu L,Liu Q. An improvement of D* algorithm for mobile robot path planning in partial unknown environment[A].China:Hunan,2009.394-397.
  • 8Kimmel R,Amir A,Bruckstein A M. Finding shortest paths on surfaces using Level Sets propagation[J].{H}IEEE Transactions on Pattern Analysis and Machine Intelligence,1995,(06):635-640.
  • 9Xu B,Stilwell D J,Kurdila A. Efficient computation of Level Sets for path planning[A].USA:Louis,2009.4414-4419.
  • 10Philippsen R,Siegwart R. An interpolated dynamic navigation function[A].Spain:Barcelona,2005.3782-3789.

共引文献328

同被引文献45

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部