摘要
为了探索矿物含量快速检测方法,基于矿物可见近红外光谱特征,从仪器参数和测试条件出发,利用微型光纤光谱仪积分球漫反射模式,与矿物进行有效耦合测量,以形成矿石中矿物含量的在线检测理论方法。结果表明,可见近红外光谱技术可对矿物进行无损快速检测,克服了传统化学分析法周期长等缺陷;选取恰当的方法处理原始光谱数据,可以消除环境噪音,提高模型精度,其中标准正态变换方法处理的效果优于其他方法;光谱分析法作为一种新的检测手段来分析矿物含量是可行的,BP模型的相关系数和均方根误差分别为0.9965和0.0203,预测效果较好,为矿物的快速检测提供了理论依据和技术指导。
In order to explore the rapid detection method of mineral content,based on the visible and near-infrared spectral characteristics of minerals,according to the instrument parameters and test conditions,the effective coupling measurement with minerals was carried out by using the diffuse reflection mode of the integrating sphere of the micro fiber optic spectrometer,so as to form the theoretical method of online detection of mineral content in ores.The results showed that the visible near infrared spectroscopy technology could be used for non-destructive and rapid detection of minerals,which overcame the defects of traditional chemical analysis methods such as long cycle.By employing appropriate methods to process the raw spectral data,environmental noise could be eliminated and model accuracy could be improved.The effect of standard normal transformation method is better than other methods.It is feasible to analyze the mineral content by spectral analysis as a new detection method.The correlation coefficient and root mean square error of BP model are 0.9965 and 0.0203,respectively.The prediction effect is good,which provides theoretical basis and technical guidance for the rapid detection of minerals.
作者
占锦玉
郭晋盛
强闻
ZHAN Jinyu;GUO Jinsheng;QIANG Wen(Zijin School of Geology and Mining,Fuzhou University;State Key Laboratory of Process Automation in Mining&Metallurgy)
出处
《现代矿业》
CAS
2023年第6期279-282,共4页
Modern Mining
基金
国家重点实验室矿冶过程自动控制技术项目(编号:BGRIMM-KZSKL-2021-0X)。
关键词
氧化铜矿
近红外光谱
BP神经网络
定量检测
copper oxide ore
near-infrared spectrum
BP neural network
quantitative detection