期刊文献+

多体飞行器展开过程动力学特性研究 被引量:1

Dynamics modeling and flight characteristics of folded multi-body aircraft
下载PDF
导出
摘要 基于多刚体系统动力学理论研究了折叠型多体飞行器动力学建模的方法,考虑多体飞行器为一个完整的多刚体系统,建立了能够完整描述多体飞行器水平发射后自由展开过程的动力学模型。在多体动力学模型的基础上,添加了飞行单元之间柔性连接的卷曲弹簧力矩和阻尼力矩模型。以某折叠型三段翼飞行器为算例进行了数值仿真计算,研究了飞行单元之间的柔性连接刚度系数对折叠型多体飞行器自由展开过程动力学特性的影响以及柔性连接刚度与最大初始折叠角之间的相互关系,并确定了柔性连接刚度系数与最大初始折叠角之间的稳定域包线。 This paper studies the dynamic modeling method of fold-able multi-body aircraft based on the dynamics theory of multi-body system.Considering the multi-body aircraft as a complete multi-rigid body system,the dynamic model for the free unfolding process of the multi-body aircraft after horizontal launch is established.On the basis of the multi-body dynamics model,the coil spring moment model and the damping moment model for the flexible connection between the flight units are added.Taking a certain type of fold-able three-section wing aircraft as an example,the numerical simulation calculation is carried out.The influence of the flexible connection stiffness coefficient between the flight unit on the dynamic characteristics of the fold-able multi-body aircraft in the free deployment process and the relationship between the stiffness of the flexible connection and the maximum initial folding angle are studied.Finally,the stability envelope between the stiffness coefficient of the flexible connection and the maximum initial folding angle is determined.
作者 王宇 祝小平 周洲 WANG Yu;ZHU Xiaoping;ZHOU Zhou(School of Astronautics,Northwestern Polytechnical University,Xi′an 710072,China;School of Aeronautics,Northwestern Polytechnical University,Xi′an 710072,China)
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2023年第3期490-499,共10页 Journal of Northwestern Polytechnical University
基金 陕西省自然科学基础研究计划(2023-JC-QN-0043,2022JQ-060) 陕西省重点研发计划(2023-YBGY-373,2021ZDLGY09-08)资助
关键词 多刚体系统动力学 折叠型多体飞行器 连接刚度系数 折叠角 dynamics of multi-body systems fold-able multi-body aircraft stiffness coefficient of connection folding angle
  • 相关文献

参考文献6

二级参考文献50

  • 1Chao AN,Chao YANG,Changchuan XIE,Lan YANG.Flutter and gust response analysis of a wing model including geometric nonlinearities based on a modified structural ROM[J].Chinese Journal of Aeronautics,2020,33(1):48-63. 被引量:10
  • 2Wilson J R. Morphing UAVs change the shape of warfare [J]. Aerospace America, 2004, 42(2): 28- 29.
  • 3Moorhouse D, Sanders B, yon Spakovsky M, et al. Benefits and design challenges of adaptive structures for morphing aircraft [ J ]. Aeronautical Journal, 2006, 110 (1105): 157 -162.
  • 4Bowman J C, Plumley R W, Dubois J A, et al. Mission effectiveness comparisons of morphing and non-morphing vehicles[R]. AIAA-2006 -7771, 2006.
  • 5Bowman J, Sanders B, Weisshaar Terrence A. Evaluating the impact of morphing technologies on aircraft performance[R]. AIAA -2002- 1631, 2002.
  • 6Wlezien R W, Horner G C, McGowan A R, et al. The aircraft morphing program[R]. AIAA-1998 -1927, 1998.
  • 7Kudva J N, Sanders B, Pinkerton-Florance J, et al. The DARPA/AFRL/NASA smart wing program-final overview[C]//McGowan A R. Smart Structures and Materials 2002: Industrial and Commercial Applieations of Smart Structures Technologies. 2002:37- 43.
  • 8Rodriguez A R. Morphing aircraft technology survey[R]. AIAA- 2007- 1258, 2007.
  • 9Bye D R, McClure P D. Design of a morphing vehicle[R]. AIAA -2007- 1728, 2007.
  • 10Flanaganl J S, Strutzenberg R C, Myers R B, et al. Development and flight testing of a morphing aircraft, the NextGen MFX-1[R]. AIAA-2007-1707, 2007.

共引文献60

同被引文献19

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部