期刊文献+

基于轻量化网络的陶瓷辊道窑火焰图像识别方法

Flame Image Recognition Method of Ceramic Roller Kiln Based on Lightweight Convolutional Neural Network
下载PDF
导出
摘要 针对热电偶在陶瓷辊道窑高温环境下容易腐蚀老化,导致其温度检测精度下降的问题,提出采用计算机视觉火焰检测代替热电偶的陶瓷辊道窑温度智能检测方法。该方法是一种基于新型轻量化卷积神经网络,通过减少网络深度,以及采用大卷积核的设计,避免模型的过拟合现象,减少了模型的复杂度和推算时间,使模型实现了检测准确性的提升。实验结果表明:该新型轻量化卷积神经网络相比原始MobelinetV2模型,识别特征平均准确率提升了4.58%、平均相对误差减少了0.0918%、运算时间减少了41.89%。显然,该新型网络模型使运算速度和分类性能大大提高。 The thermocouple is easy to corrode and age in the high temperature environment of ceramic Roller Kiln,which leads to the decrease of its temperature detection accuracy.This paper proposes an intelligent temperature detection method of ceramic Roller Kiln based on computer vision flame detection instead of thermocouple.The method can improve the detection accuracy based on a new lightweight convolutional neural network model,which avoids over-fitting of models by reducing network depth and using a large convolutional kernel design so as to reduce model complexity and estimation time.Experimental results show that compared with the original MobelinetV2 model,the novel lightweight convolutional neural network proposed in this paper improves the average accuracy of feature recognition by 4.58%,reduces the average relative error by 0.0918%and the operation time by 41.89%.Obviously,the computational speed and classification performance of the new network model are greatly improved.
作者 朱永红 杨荣杰 段明明 ZHU Yonghong;YANG Rongjie;DUAN Mingming(School of Mechanical and Electronic Engineering,Jingdezhen Ceramic University,Jingdezhen 333403,Jiangxi,China)
出处 《中国陶瓷工业》 CAS 2023年第3期1-8,共8页 China Ceramic Industry
基金 国家自然科学基金(62063010,62062044) 江西省自然科学基金(20202BABL202010)。
关键词 陶瓷辊道窑 轻量化卷积神经网络 火焰图像识别 温度检测 ceramic Roller Kiln lightweight convolutional neural network flame image recognition temperature
  • 相关文献

参考文献3

二级参考文献31

  • 1娄春,周怀春,朱国良,邵勇.煤粉炉内颗粒辐射特性的检测与分析[J].工程热物理学报,2007,28(z2):217-220. 被引量:4
  • 2姜睿,罗贵明.基于加权最小二乘法的最优适应控制器[J].自动化学报,2006,32(1):140-147. 被引量:11
  • 3易正明,吕子剑,刘志明.氧化铝回转窑火焰图像处理与特征提取[J].仪器仪表学报,2006,27(8):969-972. 被引量:15
  • 4Jiang Z W, Luo Z X, Zhou H C. A simple measurement method of temperature and emissivity of coal-fired flames from visible radiation image and its application in a CFB boiler furnace. Fuel, 2009, 88(6): 980-987.
  • 5Luo Z X, Zhou H C. A combustion-monitoring system with 3-D temperature reconstruction based on flame-image pro- cessing technique. IEEE Transactions on Instrumentation and Measurement, 2007, 56(5): 1877-1882.
  • 6Bae H, Kim S, Wang B H, Lee M H, Harashima F. Flame detection for the steam boiler using neural networks and im- age information in the Ulsan steam power generation plant. IEEE Transactions on Industrial Electronics, 2006, 53(1): 338-348.
  • 7Krabicka J, Lu G, Yan Y. Profiling and characterization of flame radicals by combining spectroscopic imaging and neu- ral network techniques. IEEE Transactions on Instrumenta- tion and Measurement, 2011, 60(5): 1854-1860.
  • 8Smart J, Lu G, Yan Y, Riley G. Characterisation of an oxy- coal flame through digital imaging. Combustion and Flame, 2010, 157(6): 1132-1139.
  • 9Lin B, Jorgensen S B. Soft sensor design by multivariate fusion of image features and process measurements. Journal of Process Control, 2011, 21(4): 547-553.
  • 10Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: theory and applications. Neurocomputing, 2006, 70(1-3): 489-501.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部