摘要
设计了基于CatBoost算法的多传感器信息融合可燃气体燃爆状态监测系统,其中甲烷采集使用响应更快的催化燃烧传感器和测量范围更大的红外甲烷传感器进行配合采集,使其能在高浓度气体环境中快速检测甲烷浓度。首先将获取的传感器数据通过梯度提升树算法筛选出最能表征燃爆状态的特征;然后使用SMOTEENN算法对特征集进行类不平衡处理;最后通过CatBoost算法对数据进行分类训练得到预测模型。该模型对可燃气体燃爆状态的分类具有较高的准确率。
In the paper,a multi-sensor information fusion monitoring system based on CatBoost algorithm is designed for combustible gas ignition and explosion state.In this system,a catalytic combustion sensor with faster response time and an infrared methane sensor with a larger measurement range are used for methane acquisition,making it fast and able to detect methane concentration in a high-concentration gas environment.The sensor data obtained are selected by gradient lifting tree algorithm to select the characteristics that can best characterize the state of ignition and detonation.Then SMOTEENN algorithm is used to deal with class unbalance of feature set.Finally,CatBoost algorithm is used to classify and train the data to get the prediction model.The model has high accuracy for classification of combustible gas explosion state.
作者
周龙
陈向东
丁星
刘小飞
Zhou Long;Chen Xiangdong;Ding Xing;Liu Xiaofei(School of Information Science and Technology,Southwest Jiaotong University,Chengdu 610097,China)
出处
《单片机与嵌入式系统应用》
2023年第7期76-79,共4页
Microcontrollers & Embedded Systems
基金
国家自然科学基金重点资助项目(61731016)
中央高校基本科研费(2682022ZTPY001)。