期刊文献+

Group Lasso based redundancy-controlled feature selection for fuzzy neural network 被引量:1

原文传递
导出
摘要 If there are a lot of inputs,the readability of the “If-then” fuzzy rule is reduced,and the complexity of the fuzzy neural network structure will be increased.Hence,to optimize the structure of the fuzzy rule based neural network,a group Lasso based redundancy-controlled feature selection(input pruning) method is proposed.For realizing feature selection,the linear/nonlinear redundancy between features is considered,and the Pearson’s correlation coefficient is employed to construct the additive redundancy-controlled regularizer in the error function.In addition,considering the past gradient information,a novel parameter optimization method is presented.Finally,we demonstrate the effectiveness of our method on two benchmark classification datasets.
机构地区 The
出处 《Optoelectronics Letters》 EI 2023年第5期284-289,共6页 光电子快报(英文版)
基金 supported by the Major Project of National Natural Science Foundation of China (No.U19B2019)。
  • 相关文献

参考文献1

二级参考文献5

共引文献23

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部