期刊文献+

基于非负正交矩阵分解的多视图聚类图像分割算法 被引量:2

Non-negative Orthogonal Matrix Factorization Based Multi-view Clustering Image Segmentation Algorithm
下载PDF
导出
摘要 多视图聚类在应对非线性结构数据上具有一定优势,却存在需要后处理和时间效率较低等缺点.针对这一问题,文中提出基于非负正交矩阵分解的多视图聚类图像分割算法.首先,提取图像多视图数据,使用流形学习非线性降维方法获取每个视图的谱嵌入矩阵,构建相应的谱块结构.再设计自适应权值,将谱块结构融合成一致性图矩阵.然后,对一致性图矩阵进行非负正交矩阵分解,获取非负嵌入矩阵.最后,由非负嵌入矩阵获得多视图特征的聚类,进而得到图像分割结果.在5个数据集上的对比实验表明,文中算法在分割精度和时间效率上都有一定提升. Multi-view graph clustering shows some advantages in dealing with nonlinear structured data,but it exhibits drawbacks such as the need of post-processing and low time efficiency.To solve this problem,a non-negative orthogonal matrix factorization based multi-view clustering image segmentation algorithm(NOMF-MVC)is proposed.Firstly,multi-view data of an image is extracted,and the manifold learning nonlinear dimensionality reduction method is employed to obtain the spectral embedding matrix of each view.Corresponding spectral block structure is constructed and it is fused into a consistency graph matrix via designed adaptive weights.Secondly,the non-negative embedding matrix is obtained by the non-negative orthogonal matrix factorization of the consistency graph matrix.Finally,the clustering of multi-view features is performed by the non-negative embedding matrix,and thereby image segmentation results are yielded.Comparative experiments on five datasets show certain improvements in segmentation accuracy and time efficiency achieved by NOMF-MVC.
作者 张荣国 曹俊辉 胡静 张睿 刘小君 ZHANG Rongguo;CAO Junhui;HU Jing;ZHANG Rui;LIU Xiaojun(College of Computer Science and Technology,Taiyuan University of Science and Technology,Taiyuan 030024;School of Mechanical Engineering,Hefei University of Technology,Hefei 230009)
出处 《模式识别与人工智能》 EI CSCD 北大核心 2023年第6期556-571,共16页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.51875152) 山西省自然科学基金项目(No.202203021211206,202203021211189) 山西省教育厅项目(No.2022YJJG192) 山西省研究生创新项目(No.2022Y700)资助。
关键词 流形学习 谱结构融合 非负正交矩阵分解 图像分割 多视图聚类 Manifold Learning Spectral Structure Fusion Non-negative Orthogonal Matrix Factorization Image Segmentation Multi-view Clustering
  • 相关文献

参考文献2

二级参考文献27

  • 1Sakalli M, Lain K M, Hang Y. A Faster Converging Snake Algo- rithm to Locate Object Boundaries. IEEE Trans on Image Proce- ssing, 2006, 15(5) : 1182-1191.
  • 2Sethian J A. Evolution, Implementation, and Application of Level Set and Fast Marching Methods for Advancing Fronts. Journal of Computational Physics, 2001, 169(2) : 503-555.
  • 3Li C M, Xu C Y, Gui C F, et al. Level Set Evolution without Rei- nitialization: A New Variational Formulation // Proe of the IEEE Computer Society Conference on Computer Vision and Pattern Re- cognition. San Diego, USA, 2005, 1: 430-436.
  • 4Boykov Y, Veksler O, Zabih R. Fast Approximate Energy Minimi- zation via Graph Cuts. IEEE Trans on Pattern Analysis and Machine Intelligence, 2001, 23(11 ): 1222-1239.
  • 5Boykov Y, Funka-Lea G. Graph Cut and Efficient N-D Image Seg- mentation. International Journal of Computer Vision, 2006, 70(2) : 109-131.
  • 6Lombaert H, Sun Y Y, Grady L, et al. A Multilevel Banded Graph Cuts Method for Fast Image Segmentation//Proc of the 10th IEEE International Conference on Computer Vision. Beijing, China, 2005,1: 259-265.
  • 7Hart S D, Tao W B, Wu X L, et al. Fast Image Segmentation Based on Multilevel Banded Closed-Form Method. Pattern Recognition Le- tters, 2010, 31(3): 216-225.
  • 8Li Y, Sun J, Tang C K, et al. Lazy Snapping. ACM Trans on Graphics, 2004, 23 ( 3 ) : 303-308.
  • 9Ren X F, Malik J. Learning a Classification Model for Segmentation //Proc of the 9th IEEE International Conference on Computer Vi- sion. Nice, France, 2003, 1: 10-17.
  • 10Boykov Y, Kolmognrov V. An Experimental Comparison of Min- Cut/Max-Flow Algorithms for Energy Minimization in Vision. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26 (9) : 1124-1137.

共引文献12

同被引文献15

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部