期刊文献+

Constraint-Guided Autoencoders to Enforce a Predefined Threshold on Anomaly Scores:An Application in Machine Condition Monitoring 被引量:1

下载PDF
导出
摘要 Anomaly detection(AD)is an important task in a broad range of domains.A popular choice for AD are Deep Support Vector Data Description models.When learning such models,normal data is mapped close to and anomalous data is mapped far from a center,in some latent space,enabling the construction of a sphere to separate both types of data.Empirically,it was observed:(i)that the center and radius of such sphere largely depend on the training data and model initialization which leads to difficulties when selecting a threshold,and(ii)that the center and radius of this sphere strongly impact the model AD performance on unseen data.In this work,a more robust AD solution is proposed that(i)defines a sphere with a fixed radius and margin in some latent space and(ii)enforces the encoder,which maps the input to a latent space,to encode the normal data in a small sphere and the anomalous data outside a larger sphere,with the same center.Experimental results indicate that the proposed algorithm attains higher performance compared to alternatives,and that the difference in size of the two spheres has a minor impact on the performance.
出处 《Journal of Dynamics, Monitoring and Diagnostics》 2023年第2期144-154,共11页 动力学、监测与诊断学报(英文)
基金 This research received funding from the Flemish Government(AI Research Program) This research has received support of Flanders Make,the strategic research center for the manufacturing industry.
  • 相关文献

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部