期刊文献+

A deep-reinforcement learning approach for optimizing homogeneous droplet routing in digital microfluidic biochips

下载PDF
导出
摘要 Over the past two decades,digital microfluidic biochips have been in much demand for safety-critical and biomedical applications and increasingly important in point-of-care analysis,drug discovery,and immunoassays,among other areas.However,for complex bioassays,finding routes for the transportation of droplets in an electrowetting-on-dielectric digital biochip while maintaining their discreteness is a challenging task.In this study,we propose a deep reinforcement learning-based droplet routing technique for digital microfluidic biochips.The technique is implemented on a distributed architecture to optimize the possible paths for predefined source–target pairs of droplets.The actors of the technique calculate the possible routes of the source–target pairs and store the experience in a replay buffer,and the learner fetches the experiences and updates the routing paths.The proposed algorithm was applied to benchmark suitesⅠand Ⅲ as two different test benches,and it achieved significant improvements over state-of-the-art techniques.
出处 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2023年第2期1-12,共12页 纳米技术与精密工程(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部