摘要
随着大规模可再生能源的并网,风电出力的波动性与随机性需要充足的灵活性资源满足其并网需求。首先分析风电场的并网有功调节需求,综合考虑多尺度灵活性资源的出力特性与经济性,提出了一种多尺度灵活性资源博弈下风电场储能容量优化模型。其次,基于NashQ算法来求解多尺度灵活性资源博弈问题,自适应优化各个智能体的学习率,提高了算法的收敛速度。最后,通过仿真验证了所提模型和方法的有效性。
With the grid connection of large-scale renewable energy,the fluctuation and randomness of wind power output need sufficient flexibility resources to meet its grid connection needs.Firstly,the grid connected active power regulation requirements of wind farms are analyzed.Considering the output characteristics and economy of multi-scale flexible resources,an optimization model of wind farm energy storage capacity under multi-scale flexible resource game is proposed.Secondly,NashQ algorithm is used to solve the multi-scale flexible resource game problem and the learning rate of each agent is adaptively optimized,which can improve the convergence speed of the algorithm.Finally,the effectiveness of the proposed model and method is verified by simulation.
作者
白忠彬
BAI Zhongbin(Fujian Distribution Sales Co.,Ltd.,Fuzhou 350001,China)
出处
《电器与能效管理技术》
2023年第5期79-88,共10页
Electrical & Energy Management Technology
关键词
风电并网
储能容量优化
多时间尺度
NASH均衡
自适应学习率
wind power grid connection
optimization of energy storage capacity
multiple time scales
Nash equilibrium
adaptive learning rate