期刊文献+

Multi-Agent System for Electric Vehicle Charging Scheduling in Parking Lots 被引量:5

原文传递
导出
摘要 As the number of electric vehicles(EVs)increases,massive numbers of EVs have started to gather in commercial parking lots to charge and discharge,which may significantly impact the operation of the grid.There may also be a deviation in the departure time of charged and discharged EVs in commercial parking lots.This deviation can lead to insufficient battery energy when the EVs leave the parking lot.This study uses the simulation software AnyLogic to build a commercial parking lot multi-agent simulation model,and the agent-based model can fully reflect the autonomy of individual EVs.Based on this simulation model,we propose an EV scheduling algorithm.The algorithm contains two main agents.The first is the power distribution center agent(PDCA),which is used to coordinate the energy output of photovoltaic(PV),energy storage system(ESS),and distribution station(DS)to solve the problem of grid overload.The second is the scheduling center agent(SCA),which is used to solve the insufficient battery energy problem due to EVs’random departures.The SCA includes two stages.In the first stage,a priority scheduling algorithm is proposed to emphasize the fairness of EV charging.In the second stage,a genetic algorithm is used to accurately determine the time interval between charging and discharging to ensure the maximum benefit of EV owner.Finally,simulation experiments are conducted in AnyLogic,and the results demonstrate the superiority of the algorithm over the classical algorithm.
出处 《Complex System Modeling and Simulation》 2023年第2期129-142,共14页 复杂系统建模与仿真(英文)
基金 supported by the National Natural Science Foundation of China(No.61873222) the Hunan Provincial Key Research and Development Program(No.2021GK2019) the Project of Hunan National Center for Applied Mathematics,China(No.2020ZYT003).
  • 相关文献

同被引文献43

引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部