摘要
3D打印技术融合云制造模式形成的3D打印云服务具备低成本、跨区域、协同化的特点,可满足用户日益增长的个性化定制的需求。为解决3D打印云服务的合理分配问题和保障3D打印云平台高效运行,以时间和成本为优化目标,构建5约束优化模型,提出一种引入全局最优解信息的人工蜂群算法。通过仿真实验对算法性能、优化目标的选取进行分析,结果表明,改进的算法比对比算法具有更好的收敛性和稳定性,且与优化模型高度适配。
The 3D printing cloud service formed by the integration of 3D printing technology with the cloud manufacturing mode has the characteristics of low cost,cross-regional and synergy,so as to meet the growing needs of users for personalized customization.In order to solve the reasonable distribution of 3D printing cloud services and ensure the efficient operation of the 3D printing cloud platform,a 5-constraint optimization model is constructed with time and cost as the optimization goals,and an artificial bee colony algorithm that introduces global optimal solution information is proposed.The performance of the algorithm and the selection of optimization objectives are analyzed through simulation experiments.The results show that the improved algorithm has better convergence and stability than the comparison algorithm,and is highly suitable for the optimization model.
作者
余强
张煜
万长成
郭亮
YU Qiang;ZHANG Yu;WAN Changcheng;GUO Liang(Industrial Cloud Manufacturing(Sichuan)Innovation Center Co.,Ltd.,Chengdu 600003,China;China Ordnance Equipment Group Automation Research Institute Co.,Ltd.,Mianyang 621000,China;School of Mechanical Engineering,Xihua University,Chengdu 610039,China;School of Machatronic Engineering,Southwest Petroleum University,Chengdu 610500,China;Oil and Gas Equipment Technology Sharing and Service Platform of Sichuan Province,Southwest Petroleum University,Chengdu 610500,China)
出处
《机械工程师》
2023年第7期112-115,119,共5页
Mechanical Engineer
基金
四川省重点研发项目(22QYCX0102)
成都市国际科技合作项目(2020-GH02-00040-HZ)
西南石油大学青年科技创新团队(2019CXTD02)。
关键词
3D打印
云制造
服务组合
人工蜂群算法
多目标优化
3D printing
cloud manufacturing
service composition
artificial bee colony algorithm
multi-objective optimization