期刊文献+

二型模糊决策理论与方法研究综述 被引量:3

Type-2 fuzzy decision-making theories and methodologies:A systematic review
原文传递
导出
摘要 二型模糊集(type-2 fuzzy set,T2FS)是将模糊集中的隶属函数拓展为一型模糊集而产生的集合,其具有表示更深层次不确定性的优势,能够极大程度地增强对客观世界不确定性的刻画能力.因此,近年来围绕二型模糊环境下的决策理论与方法研究得到了蓬勃发展.鉴于此,对二型模糊决策理论与方法进行系统性综述,梳理该领域的发展脉络,阐明现有工作的研究态势,总结二型模糊信息集成与决策的主要研究成果.首先,介绍二型模糊集的发展历程和基础理论研究现状;然后,分别针对基于二型模糊信息的决策基础理论(信息融合理论、偏好关系理论和测度理论)以及决策方法的研究现状进行概述;最后,对二型模糊决策理论与方法的未来研究方向进行展望. The type-2 fuzzy set is a set produced by expanding the membership function of fuzzy set into the type-1 fuzzy set.With the advantage of expressing deeper uncertainty,it is able to greatly enhance the description of uncertainty in the objective world.Therefore,the research on decision-making theories and methods in the type-2 fuzzy environment has been booming in recent years.This paper systematically surveys type-2 fuzzy decision-making theories and methods,sorts the development of this field,clarifies the research trend of existing work,and summarizes the main research results of type-2 fuzzy information aggregation and decision-making.Firstly,the development process and fundamental theory research of the T2FS are introduced.Then,the research status of decision fundamental theories(information fusion theory,preference relation theory and measure theory)and decision methods based on type-2 fuzzy information are summarized respectively.Finally,prospects of future research directions of type-2 fuzzy decision-making theories and methods are presented.
作者 秦晋栋 徐婷婷 QIN Jin-dong;XU Ting-ting(School of Management,Wuhan University of Technology,Wuhan 430070,China;Research Center for Data Science and Intelligent Decision Making,Wuhan University of Technology,Wuhan 430070,China)
出处 《控制与决策》 EI CSCD 北大核心 2023年第6期1510-1523,共14页 Control and Decision
基金 国家自然科学基金项目(72071151,71701158) 教育部人文社会科学基金项目(17YJC630114) 湖北省自然科学基金项目(2020CFB773).
关键词 二型模糊集 信息融合理论 偏好关系理论 测度理论 决策方法 type-2 fuzzy set information fusion theory preference relation theory measure theory decision-making method
  • 相关文献

参考文献6

二级参考文献57

  • 1王飞跃.词计算和语言动力学系统的基本问题和研究[J].自动化学报,2005,31(6):844-852. 被引量:34
  • 2Zadeh L A. The concept of a linguistic variable and its application to approximate reasoning[J]. Information Sciences, 1975, 8(2): 199-249.
  • 3Liang Q, Mendel J M, Type-2 fuzzy logic systems theory design[J]. IEEE Trans on Fuzzy Systems, 2000, 8(5): 535- 550.
  • 4Mendel J M, John R I, Liu E Interval type-2 fuzzy logic systems made simple[J]. IEEE Trans on Fuzzy Systems, 2006, 14(6): 808-821.
  • 5Zeng W, Li H. Inclusion measures, similarity measures, and the fuzziness of fuzzy sets and their relations[J]. Int J of Intelligent Systems, 2006, 21(6): 639-653.
  • 6Zadeh L A. Similarity relations and fuzzy ordering[J]. Information Sciences, 1971, 3(2): 177-200.
  • 7Bustince H. Application to approximate reasoning based on interval-valued fuzzy sets[J]. Int J of Approximate Reasoning, 2000, 23(3): 137-209.
  • 8Pappis C E Karacapilidis N I. A comparative assessment of measures of similarity of fuzzy values[J]. Fuzzy Sets and Systems, 1993, 56(2): 171-174.
  • 9Zwick R, Carlstein E, Budescu D V. Measures of similarity among fuzzy concepts: A comparative analysis[J], lnt J of Approximate Reasoning, 1987, 1(22): 221-242.
  • 10Zeng W, Li H. Relationship between similarity measure and entropy of interval-valued fuzzy sets[J]. Fuzzy Sets and Systems, 2006, 157(11): 1477-1484.

共引文献53

同被引文献20

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部