期刊文献+

Operators with the Lipschitz bounded approximation property 被引量:1

原文传递
导出
摘要 We show that if a bounded linear operator can be approximated by a net(or sequence)of uniformly bounded finite rank Lipschitz mappings pointwisely,then it can be approximated by a net(or sequence)of uniformly bounded finite rank linear operators under the strong operator topology.As an application,we deduce that a Banach space has an(unconditional)Lipschitz frame if and only if it has an(unconditional)Schauder frame.Another immediate consequence of our result recovers the famous Godefroy-Kalton theorem(Godefroy and Kalton(2003))which says that the Lipschitz bounded approximation property and the bounded approximation property are equivalent for every Banach space.
出处 《Science China Mathematics》 SCIE CSCD 2023年第7期1545-1554,共10页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant Nos.11671214,11971348 and 12071230) Hundred Young Academia Leaders Program of Nankai University(Grant Nos.63223027 and ZB22000105) Undergraduate Education and Teaching Project of Nankai University(Grant No.NKJG2022053) National College Students'Innovation and Entrepreneurship Training Program of Nankai University(Grant No.202210055048) supported by Simons Foundation(Grant No.585081)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部