摘要
Control over magnetic properties by optical stimulation is not only interesting from the physics point of view,but also important for practical applications such as magneto-optical devices.Here,based on a simple tight-binding(TB)model,we propose a general theory of light-induced magnetic phase transition(MPT)in antiferromagnets.Considering the fact that the bandgap of the antiferromagnetic(AFM)phase is usually larger than that of the ferromagnetic(FM)one for a given system,we suggest that light-induced electronic excitation prefers to stabilize the FM state over the AFM one,and will induce an MPT from AFM phase to FM phase once a critical photocarrier concentration(αc)is reached.This theory has been confirmed by performing firstprinciples calculations on a series of 2D van der Waals(vd W)antiferromagnets.Interestingly,a linear relationship betweenαc and the intrinsic material parameters is obtained,in agreement with our TB model analysis.Our general theory paves a new way to manipulate 2D magnetism with high speed and superior resolution.
基金
supported by the National Natural Science Foundation of China(Grant Nos.11991061,11825403,and 12188101)
the Guangdong Major Project of Basic and Applied Basic Research(Future functional materials under extreme conditions-2021B0301030005)
the support from the National Natural Science Foundation of China(NSAF,Grant No.U1930402)。