摘要
Consider the precision attitude regulation with vibration suppression for an uncertain and disturbed flexible spacecraft.The disturbance at issue is typically any finite superposition of sinusoidal signals with unknown frequencies and step signals of unknown amplitudes.First we show that the conventional mathematical model for flexible spacecrafts is transformable to a multi-input multi-output(MIMO)strict-feedback nonlinear normal form.Particularly it is strongly minimum-phase and has a well-defined uniform vector relative degree.Then it enables us to develop an adaptive internal model-based controller in the framework of adaptive output regulation to solve the problem.It is proved that asymptotic stability can be guaranteed for the attitude regulation task and the vibration of flexible appendages vanishes asymptotically.Hence,the present study explores a new idea for control of flexible spacecraft in virtue of its system structures.
基金
This work was supported by the National Natural Science Foundation of China(Nos.61873250,62073168,61871221).