期刊文献+

Linking microbial carbon pump capacity and efficacy to soil organic carbon storage and stability under heavy metal pollution 被引量:1

原文传递
导出
摘要 Heavy metal pollution can lead to a great loss of soil organic carbon(SOC).However,the microbial mechanisms that link heavy metal pollution to SOC remain poorly understood.Here,we investigated five apple-orchard soils at different distances from a Pb-Zn smelter.After assessing the heavy metal pollution level based on Grade Ⅱ of the national soil environmental quality standard(China),we found SOC stocks and microbial carbon pump(MCP)capacity(i.e.,microbial residue carbon)under medium and heavy pollution levels were significantly lower than those under safe,cordon and light pollution levels.The structural equation model showed causality in the SOC variations linked to pollution level through MCP capacity,which could contribute 77.8% of the variance in SOC storage.This verified MCP capacity can serve as a key parameter for evaluation of SOC storage under heavy metal pollution.Soil MCP efficacy,i.e.,the proportion of microbial residue carbon to SOC,also decreased under medium and heavy pollution.This suggested that,with a heavier pollution level,there was a higher rate of reduction of microbial residue carbon in soil than the rate of reduction of SOC.As MCP efficacy can be a useful assessment of SOC stability,the significantly positive relationship between MCP efficacy and clay content in correlation analysis implied that lower MCP efficacy was correlated with SOC stability under the heavier pollution level.Our study provides valuable insights to identify the mechanisms of microbially mediated C transformation processes that are influenced by heavy metal pollution in agroecosystems.
出处 《Soil Ecology Letters》 CSCD 2023年第2期55-63,共9页 土壤生态学快报(英文)
基金 supported by the Natural Science Foundation of Shandong Province(ZR2019PD022) the Central Public-interest Scientific Institution Basal Research Fund(FIRI20210401) the Major Scientific and Technological Innovation Projects of Key Research and Development Program in Shandong Province(2019JZZY010717).
  • 相关文献

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部