期刊文献+

A tip-coupled, two-cantilever, non-resonant microsystem for direct measurement of liquid viscosity

原文传递
导出
摘要 We report a non-resonant piezoelectric microelectromechanical cantilever system for the measurement of liquid viscosity.The system consists of two PiezoMEMS cantilevers in-line,with their free ends facing each other.The system is immersed in the fluid under test for viscosity measurement.One of the cantilevers is actuated using the embedded piezoelectric thin film to oscillate at a pre-selected non-resonant frequency.The second cantilever,the passive one,starts to oscillate due to the fluid-mediated energy transfer.The relative response of the passive cantilever is used as the metric for the fluid's kinematic viscosity.The fabricated cantilevers are tested as viscosity sensors by carrying out experiments in fluids with different viscosities.The viscometer can measure viscosity at a single frequency of choice,and hence some important considerations for frequency selection are discussed.A discussion on the energy coupling between the active and the passive cantilevers is presented.The novel PiezoMEMS viscometer architecture proposed in this work will overcome several challenges faced by state-of-the-art resonance MEMS viscometers,by enabling faster and direct measurement,straightforward calibration,and the possibility of shear rate-dependent viscosity measurement.
出处 《Microsystems & Nanoengineering》 SCIE CSCD 2023年第2期23-31,共9页 微系统与纳米工程(英文)
基金 The work was partially supported by the Core Research Grant of the Science and Engineering Research Board,India.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部