期刊文献+

lontophoresis-driven microneedle patch for the active transdermal delivery of vaccine macromolecules

原文传递
导出
摘要 COVID-19 has seriously threatened public health,and transdermal vaccination is an effective way to prevent pathogen infection.Microneedles(MNs)can damage the stratum corneum to allow passive diffusion of vaccine macromolecules,but the delivery effciency is low,while iontophoresis can actively promote transdermal delivery but fails to transport vaccine macromolecules due to the barrier of the stratum corneum.Herein,we developed a wearable iontophoresis-driven MN patch and its iontophoresis-driven device for active and effcient transdermal vaccine macromolecule delivery.Polyacrylamide/chitosan hydrogels with good biocompatibility,excellent conductivity,high elasticity,and a large loading capacity were prepared as the key component for vaccine storage and active iontophoresis.The transdermal vaccine delivery strategy of the iontophoresis-driven MN patch is“press and poke,iontophoresis-driven delivery,and immune response”.We demonstrated that the synergistic effect of MN puncture and iontophoresis significantly promoted transdermal vaccine delivery effciency.In vitro experiments showed that the amount of ovalbumin delivered transdermally using the iontophoresis-driven MN patch could be controlled by the iontophoresis current.In vivo immunization studies in BALB/c mice demonstrated that transdermal inoculation of ovalbumin using an iontophoresis-driven MN patch induced an effective immune response that was even stronger than that of traditional intramuscular injection.Moreover,there was little concern about the biosafety of the iontophoresis-driven MN patch.This delivery system has a low cost,is user-friendly,and displays active delivery,showing great potential for vaccine self-administration at home.
出处 《Microsystems & Nanoengineering》 SCIE CSCD 2023年第2期143-156,共14页 微系统与纳米工程(英文)
基金 supported by the National Natural Science Foundation of China(Project No.51975597 and 52175446) the Natural Science Foundation of Guangdong Province(Project Nos.2022B1515020011 and 2021A1515011740) the Shenzhen Science and Technology Program(Project No.JCYJ20220818102201003) the Foundation of Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument(Project No.2020B1212060077).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部