期刊文献+

Discontinuous Galerkin Methods for Semilinear Elliptic Boundary Value Problem

原文传递
导出
摘要 A discontinuous Galerkin(DG)scheme for solving semilinear elliptic problem is developed and analyzed in this paper.The DG finite element discretization is first established,then the corresponding well-posedness is provided by using Brouwer’s fixed point method.Some optimal priori error estimates under both DG norm and L^(2)norm are presented,respectively.Numerical results are given to illustrate the efficiency of the proposed approach.
出处 《Advances in Applied Mathematics and Mechanics》 SCIE 2023年第2期450-467,共18页 应用数学与力学进展(英文)
基金 The second and third authors are supported by the National Natural Science Foundation of China(No.12071160) the Guangdong Basic and Applied Basic Research Foundation(No.2019A1515010724) The second author is also supported by the National Natural Science Foundation of China(No.11671159) The third author is also supported by National Natural Science Foundation of China(No.12101250) the Science and Technology Projects in Guangzhou(No.202201010644).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部