期刊文献+

Finding middle ground:Flow regimes designed for salmon and energy value

原文传递
导出
摘要 In regulated rivers,shaping seasonal flows to recover species at risk depends on understanding when to expect conflicts with competing water users and when their interests are aligned.Multi-objective optimization can be used to reveal such conflicts and commonalities.When species are involved,multi-objective optimization is challenged by the need to simulate complex species responses to flow regimes.Previously,we addressed that challenge by developing a simplified salmon model(Quantus)that defines cohorts of salmon by the river section and time in which they were spawned.Salmon in these space-time cohorts are tracked from the time redds(nests)are constructed until the cohort exits the tributary en route to the ocean.In this study,we modeled seasonal patterns in energy value and developed a Pareto-optimal frontier of seasonal flow patterns to maximize in-river salmon survival and hydropower value.Candidate flow regimes were characterized by two pulse flows varying in magnitude,timing,and duration and constrained by a total annual flow near the historical median.Our analysis revealed times when economic and salmon objectives were aligned and times when they differed.Pulse flows that favored higher energy value were timed to meet demand during extreme temperatures.Both salmon and hydropower objectives produced optimal flow regimes with pulse flows in early summer,but only solutions favoring hydropower value included high flows in mid-winter.Solutions favoring higher age-0 salmon survival provided an extended pulse flow in late winter/early spring,which suggests that access to productive floodplain habitat allowed faster growth and earlier out-migration and reduced the need for higher temperature-moderating flows later in spring.Minimum flows were also higher among solutions favoring salmon over energy.The tools used to produce these results can help to design simplified seasonal flow regimes by revealing compromise solutions that satisfy both fish and energy producers and highlighting when potential conflicts are likely.
出处 《Water Biology and Security》 2023年第3期19-29,共11页 水生生物与安全(英文)
基金 This research,conducted by Oak Ridge National Laboratory(ORNL),was supported by the US Department of Energy's(DOE)Energy Efficiency and Renewable Energy Office,Wind and Water Power Technologies Program ORNL is managed by UT-Battelle,LLC under Contract No.DEAC05-00OR22725 with the DOE The publisher,by accepting the article for publication,acknowledges that the U.S.Government retains a nonexclusive,paid-up,irrevocable,world-wide license to publish or reproduce the published form of this manuscript,or allow others to do so,for U.S.Government purposes The DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan(http://energy.gov/downloads/doe-public-access-plan).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部