期刊文献+

基于SOLO分类理论的小学数学“教—学—评”一致性探索——以几何概念的教学为例 被引量:6

下载PDF
导出
摘要 SOLO分类理论是一种量的测评与质的考查相结合的评价理论,该理论有助于深度开发结构化教学模式,达成核心素养导向的教学目标。运用SOLO分类理论指导教师以“评”促“教”,以“评”促“学”,实施结构化教学并及时跟踪评价,实现“教—学—评”一致,促进儿童思维发展进阶,最终促使课堂教学走向质的提升。
作者 季超
出处 《小学教学参考》 2023年第14期29-32,共4页 Reference for Primary Sshool Teaching
基金 江苏省无锡市教育科学“十四五”规划青年专项重点课题“基于SOLO分类理论的小学数学结构化教学实践研究”(课题批准号:D/C-b/2021/01)的阶段性研究成果之一。
  • 相关文献

参考文献10

二级参考文献31

  • 1Biggs,J.B,& Collis,K.F..Evaluating the Quality of Learning:the SOLO Taxonomy.New York:Academic Press.1982.
  • 2Biggs,J.B,& Collis,K.F,.Multimodal learning and the quality of intelligent behaviour.In H.Rowe(Ed.),Intelligence,Reconceptualization and Measurement.New Jersey:Laurence Erlbaurn Assoc.1991,pp.57-76.
  • 3Pegg,J..Assessing students' understanding at the primary and secondary level in the mathematical sciences.In J.Izard & M.Stephens(Eds),Reshaping Assessment Practice:Assessment in the Mathematical Sciences Under Challenge.Melbourne:Australian Council of Educational Research.1992,pp.368-385.
  • 4Pegg,J.& Davey,G..Interpreting Student Understanding in Geometry:A synthesis of Two Models.In R.Lehrer & C.Chazan,(Eds),Designing Learning Environments for Developing Understanding of Geometry and Space.New Jersey:Lawrence Erlbaum.1998,pp.109-135.
  • 5Case,R..The Mind' s Staircase:Exploring the conceptual underpinnings of children' s thought and knowledge.New Jersey:Laurence Erlbaum Assoc.1992.
  • 6Fischer,K.W.& Knight,C.C..Cognitive development in real children:Levels and variations.In B.Presseisen(Ed.),Learning and thinking styles:Classroom interaction.Washington:National Education Association.1990,pp.43-67.
  • 7Anderson,K.R..Cognitive psychology and its implications.San Francisco:Freeman.1980.
  • 8Campbell,K,Watson,J.& Collis,K..Volume measurement and intellectual development.Journal of-Structural Learning and Intelligent Systems,11,1992,pp279-298.
  • 9Panizzon,D.L..Senior secondary and early tertiary science students' developmental understandings of diffusion and osmosis:A neo-Piagetian approach.Unpublished thesis for the degree of PhD,University of New England,Armidale,Australia.1999.
  • 10Chick,H.Cognition in the formal modes:research mathematics and the SOLO taxonomy,Mathematics Education Research Journal.1998,Vol.10(2),pp.4-26.

引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部